root/src/ccl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ccl_debug_hook
  2. GET_TRANSLATION_TABLE
  3. ccl_driver
  4. resolve_symbol_ccl_program
  5. ccl_get_compiled_code
  6. setup_ccl_program
  7. DEFUN
  8. syms_of_ccl

     1 /* CCL (Code Conversion Language) interpreter.
     2    Copyright (C) 2001-2023 Free Software Foundation, Inc.
     3    Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
     4      2005, 2006, 2007, 2008, 2009, 2010, 2011
     5      National Institute of Advanced Industrial Science and Technology (AIST)
     6      Registration Number H14PRO021
     7    Copyright (C) 2003
     8      National Institute of Advanced Industrial Science and Technology (AIST)
     9      Registration Number H13PRO009
    10 
    11 This file is part of GNU Emacs.
    12 
    13 GNU Emacs is free software: you can redistribute it and/or modify
    14 it under the terms of the GNU General Public License as published by
    15 the Free Software Foundation, either version 3 of the License, or (at
    16 your option) any later version.
    17 
    18 GNU Emacs is distributed in the hope that it will be useful,
    19 but WITHOUT ANY WARRANTY; without even the implied warranty of
    20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    21 GNU General Public License for more details.
    22 
    23 You should have received a copy of the GNU General Public License
    24 along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.  */
    25 
    26 #include <config.h>
    27 
    28 #include <stdio.h>
    29 #include <limits.h>
    30 
    31 #include "lisp.h"
    32 #include "character.h"
    33 #include "charset.h"
    34 #include "ccl.h"
    35 #include "coding.h"
    36 #include "keyboard.h"
    37 
    38 /* Avoid GCC 12 bug <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105784>.  */
    39 #if GNUC_PREREQ (12, 0, 0)
    40 # pragma GCC diagnostic ignored "-Wanalyzer-use-of-uninitialized-value"
    41 #endif
    42 
    43 /* Table of registered CCL programs.  Each element is a vector of
    44    NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
    45    name of the program, CCL_PROG (vector) is the compiled code of the
    46    program, RESOLVEDP (t or nil) is the flag to tell if symbols in
    47    CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
    48    or nil) is the flat to tell if the CCL program is updated after it
    49    was once used.  */
    50 static Lisp_Object Vccl_program_table;
    51 
    52 /* Return a hash table of id number ID.  */
    53 #define GET_HASH_TABLE(id) \
    54   (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
    55 
    56 /* CCL (Code Conversion Language) is a simple language which has
    57    operations on one input buffer, one output buffer, and 7 registers.
    58    The syntax of CCL is described in `ccl.el'.  Emacs Lisp function
    59    `ccl-compile' compiles a CCL program and produces a CCL code which
    60    is a vector of integers.  The structure of this vector is as
    61    follows: The 1st element: buffer-magnification, a factor for the
    62    size of output buffer compared with the size of input buffer.  The
    63    2nd element: address of CCL code to be executed when encountered
    64    with end of input stream.  The 3rd and the remaining elements: CCL
    65    codes.  */
    66 
    67 /* Header of CCL compiled code */
    68 #define CCL_HEADER_BUF_MAG      0
    69 #define CCL_HEADER_EOF          1
    70 #define CCL_HEADER_MAIN         2
    71 
    72 /* CCL code is a sequence of 28-bit integers.  Each contains a CCL
    73    command and/or arguments in the following format:
    74 
    75         |----------------- integer (28-bit) ------------------|
    76         |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
    77         |--constant argument--|-register-|-register-|-command-|
    78            ccccccccccccccccc      RRR        rrr       XXXXX
    79   or
    80         |------- relative address -------|-register-|-command-|
    81                cccccccccccccccccccc          rrr       XXXXX
    82   or
    83         |------------- constant or other args ----------------|
    84                      cccccccccccccccccccccccccccc
    85 
    86    where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
    87    constant value or a relative/absolute jump address, `RRR'
    88    and `rrr' are CCL register number, `XXXXX' is one of the following
    89    CCL commands.  */
    90 
    91 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
    92 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
    93 
    94 /* CCL commands
    95 
    96    Each comment fields shows one or more lines for command syntax and
    97    the following lines for semantics of the command.  In semantics, IC
    98    stands for Instruction Counter.  */
    99 
   100 #define CCL_SetRegister         0x00 /* Set register a register value:
   101                                         1:00000000000000000RRRrrrXXXXX
   102                                         ------------------------------
   103                                         reg[rrr] = reg[RRR];
   104                                         */
   105 
   106 #define CCL_SetShortConst       0x01 /* Set register a short constant value:
   107                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   108                                         ------------------------------
   109                                         reg[rrr] = CCCCCCCCCCCCCCCCCCC;
   110                                         */
   111 
   112 #define CCL_SetConst            0x02 /* Set register a constant value:
   113                                         1:00000000000000000000rrrXXXXX
   114                                         2:CONSTANT
   115                                         ------------------------------
   116                                         reg[rrr] = CONSTANT;
   117                                         IC++;
   118                                         */
   119 
   120 #define CCL_SetArray            0x03 /* Set register an element of array:
   121                                         1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
   122                                         2:ELEMENT[0]
   123                                         3:ELEMENT[1]
   124                                         ...
   125                                         ------------------------------
   126                                         if (0 <= reg[RRR] < CC..C)
   127                                           reg[rrr] = ELEMENT[reg[RRR]];
   128                                         IC += CC..C;
   129                                         */
   130 
   131 #define CCL_Jump                0x04 /* Jump:
   132                                         1:A--D--D--R--E--S--S-000XXXXX
   133                                         ------------------------------
   134                                         IC += ADDRESS;
   135                                         */
   136 
   137 /* Note: If CC..C is greater than 0, the second code is omitted.  */
   138 
   139 #define CCL_JumpCond            0x05 /* Jump conditional:
   140                                         1:A--D--D--R--E--S--S-rrrXXXXX
   141                                         ------------------------------
   142                                         if (!reg[rrr])
   143                                           IC += ADDRESS;
   144                                         */
   145 
   146 
   147 #define CCL_WriteRegisterJump   0x06 /* Write register and jump:
   148                                         1:A--D--D--R--E--S--S-rrrXXXXX
   149                                         ------------------------------
   150                                         write (reg[rrr]);
   151                                         IC += ADDRESS;
   152                                         */
   153 
   154 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
   155                                         1:A--D--D--R--E--S--S-rrrXXXXX
   156                                         2:A--D--D--R--E--S--S-rrrYYYYY
   157                                         -----------------------------
   158                                         write (reg[rrr]);
   159                                         IC++;
   160                                         read (reg[rrr]);
   161                                         IC += ADDRESS;
   162                                         */
   163 /* Note: If read is suspended, the resumed execution starts from the
   164    second code (YYYYY == CCL_ReadJump).  */
   165 
   166 #define CCL_WriteConstJump      0x08 /* Write constant and jump:
   167                                         1:A--D--D--R--E--S--S-000XXXXX
   168                                         2:CONST
   169                                         ------------------------------
   170                                         write (CONST);
   171                                         IC += ADDRESS;
   172                                         */
   173 
   174 #define CCL_WriteConstReadJump  0x09 /* Write constant, read, and jump:
   175                                         1:A--D--D--R--E--S--S-rrrXXXXX
   176                                         2:CONST
   177                                         3:A--D--D--R--E--S--S-rrrYYYYY
   178                                         -----------------------------
   179                                         write (CONST);
   180                                         IC += 2;
   181                                         read (reg[rrr]);
   182                                         IC += ADDRESS;
   183                                         */
   184 /* Note: If read is suspended, the resumed execution starts from the
   185    second code (YYYYY == CCL_ReadJump).  */
   186 
   187 #define CCL_WriteStringJump     0x0A /* Write string and jump:
   188                                         1:A--D--D--R--E--S--S-000XXXXX
   189                                         2:LENGTH
   190                                         3:000MSTRIN[0]STRIN[1]STRIN[2]
   191                                         ...
   192                                         ------------------------------
   193                                         if (M)
   194                                           write_multibyte_string (STRING, LENGTH);
   195                                         else
   196                                           write_string (STRING, LENGTH);
   197                                         IC += ADDRESS;
   198                                         */
   199 
   200 #define CCL_WriteArrayReadJump  0x0B /* Write an array element, read, and jump:
   201                                         1:A--D--D--R--E--S--S-rrrXXXXX
   202                                         2:LENGTH
   203                                         3:ELEMENT[0]
   204                                         4:ELEMENT[1]
   205                                         ...
   206                                         N:A--D--D--R--E--S--S-rrrYYYYY
   207                                         ------------------------------
   208                                         if (0 <= reg[rrr] < LENGTH)
   209                                           write (ELEMENT[reg[rrr]]);
   210                                         IC += LENGTH + 2; (... pointing at N+1)
   211                                         read (reg[rrr]);
   212                                         IC += ADDRESS;
   213                                         */
   214 /* Note: If read is suspended, the resumed execution starts from the
   215    Nth code (YYYYY == CCL_ReadJump).  */
   216 
   217 #define CCL_ReadJump            0x0C /* Read and jump:
   218                                         1:A--D--D--R--E--S--S-rrrYYYYY
   219                                         -----------------------------
   220                                         read (reg[rrr]);
   221                                         IC += ADDRESS;
   222                                         */
   223 
   224 #define CCL_Branch              0x0D /* Jump by branch table:
   225                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   226                                         2:A--D--D--R--E-S-S[0]000XXXXX
   227                                         3:A--D--D--R--E-S-S[1]000XXXXX
   228                                         ...
   229                                         ------------------------------
   230                                         if (0 <= reg[rrr] < CC..C)
   231                                           IC += ADDRESS[reg[rrr]];
   232                                         else
   233                                           IC += ADDRESS[CC..C];
   234                                         */
   235 
   236 #define CCL_ReadRegister        0x0E /* Read bytes into registers:
   237                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   238                                         2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   239                                         ...
   240                                         ------------------------------
   241                                         while (CCC--)
   242                                           read (reg[rrr]);
   243                                         */
   244 
   245 #define CCL_WriteExprConst      0x0F  /* write result of expression:
   246                                         1:00000OPERATION000RRR000XXXXX
   247                                         2:CONSTANT
   248                                         ------------------------------
   249                                         write (reg[RRR] OPERATION CONSTANT);
   250                                         IC++;
   251                                         */
   252 
   253 /* Note: If the Nth read is suspended, the resumed execution starts
   254    from the Nth code.  */
   255 
   256 #define CCL_ReadBranch          0x10 /* Read one byte into a register,
   257                                         and jump by branch table:
   258                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   259                                         2:A--D--D--R--E-S-S[0]000XXXXX
   260                                         3:A--D--D--R--E-S-S[1]000XXXXX
   261                                         ...
   262                                         ------------------------------
   263                                         read (read[rrr]);
   264                                         if (0 <= reg[rrr] < CC..C)
   265                                           IC += ADDRESS[reg[rrr]];
   266                                         else
   267                                           IC += ADDRESS[CC..C];
   268                                         */
   269 
   270 #define CCL_WriteRegister       0x11 /* Write registers:
   271                                         1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
   272                                         2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
   273                                         ...
   274                                         ------------------------------
   275                                         while (CCC--)
   276                                           write (reg[rrr]);
   277                                         ...
   278                                         */
   279 
   280 /* Note: If the Nth write is suspended, the resumed execution
   281    starts from the Nth code.  */
   282 
   283 #define CCL_WriteExprRegister   0x12 /* Write result of expression
   284                                         1:00000OPERATIONRrrRRR000XXXXX
   285                                         ------------------------------
   286                                         write (reg[RRR] OPERATION reg[Rrr]);
   287                                         */
   288 
   289 #define CCL_Call                0x13 /* Call the CCL program whose ID is
   290                                         CC..C or cc..c.
   291                                         1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
   292                                         [2:00000000cccccccccccccccccccc]
   293                                         ------------------------------
   294                                         if (FFF)
   295                                           call (cc..c)
   296                                           IC++;
   297                                         else
   298                                           call (CC..C)
   299                                         */
   300 
   301 #define CCL_WriteConstString    0x14 /* Write a constant or a string:
   302                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   303                                         [2:000MSTRIN[0]STRIN[1]STRIN[2]]
   304                                         [...]
   305                                         -----------------------------
   306                                         if (!rrr)
   307                                           write (CC..C)
   308                                         else
   309                                           if (M)
   310                                             write_multibyte_string (STRING, CC..C);
   311                                           else
   312                                             write_string (STRING, CC..C);
   313                                           IC += (CC..C + 2) / 3;
   314                                         */
   315 
   316 #define CCL_WriteArray          0x15 /* Write an element of array:
   317                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   318                                         2:ELEMENT[0]
   319                                         3:ELEMENT[1]
   320                                         ...
   321                                         ------------------------------
   322                                         if (0 <= reg[rrr] < CC..C)
   323                                           write (ELEMENT[reg[rrr]]);
   324                                         IC += CC..C;
   325                                         */
   326 
   327 #define CCL_End                 0x16 /* Terminate:
   328                                         1:00000000000000000000000XXXXX
   329                                         ------------------------------
   330                                         terminate ();
   331                                         */
   332 
   333 /* The following two codes execute an assignment arithmetic/logical
   334    operation.  The form of the operation is like REG OP= OPERAND.  */
   335 
   336 #define CCL_ExprSelfConst       0x17 /* REG OP= constant:
   337                                         1:00000OPERATION000000rrrXXXXX
   338                                         2:CONSTANT
   339                                         ------------------------------
   340                                         reg[rrr] OPERATION= CONSTANT;
   341                                         */
   342 
   343 #define CCL_ExprSelfReg         0x18 /* REG1 OP= REG2:
   344                                         1:00000OPERATION000RRRrrrXXXXX
   345                                         ------------------------------
   346                                         reg[rrr] OPERATION= reg[RRR];
   347                                         */
   348 
   349 /* The following codes execute an arithmetic/logical operation.  The
   350    form of the operation is like REG_X = REG_Y OP OPERAND2.  */
   351 
   352 #define CCL_SetExprConst        0x19 /* REG_X = REG_Y OP constant:
   353                                         1:00000OPERATION000RRRrrrXXXXX
   354                                         2:CONSTANT
   355                                         ------------------------------
   356                                         reg[rrr] = reg[RRR] OPERATION CONSTANT;
   357                                         IC++;
   358                                         */
   359 
   360 #define CCL_SetExprReg          0x1A /* REG1 = REG2 OP REG3:
   361                                         1:00000OPERATIONRrrRRRrrrXXXXX
   362                                         ------------------------------
   363                                         reg[rrr] = reg[RRR] OPERATION reg[Rrr];
   364                                         */
   365 
   366 #define CCL_JumpCondExprConst   0x1B /* Jump conditional according to
   367                                         an operation on constant:
   368                                         1:A--D--D--R--E--S--S-rrrXXXXX
   369                                         2:OPERATION
   370                                         3:CONSTANT
   371                                         -----------------------------
   372                                         reg[7] = reg[rrr] OPERATION CONSTANT;
   373                                         if (!(reg[7]))
   374                                           IC += ADDRESS;
   375                                         else
   376                                           IC += 2
   377                                         */
   378 
   379 #define CCL_JumpCondExprReg     0x1C /* Jump conditional according to
   380                                         an operation on register:
   381                                         1:A--D--D--R--E--S--S-rrrXXXXX
   382                                         2:OPERATION
   383                                         3:RRR
   384                                         -----------------------------
   385                                         reg[7] = reg[rrr] OPERATION reg[RRR];
   386                                         if (!reg[7])
   387                                           IC += ADDRESS;
   388                                         else
   389                                           IC += 2;
   390                                         */
   391 
   392 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
   393                                           to an operation on constant:
   394                                         1:A--D--D--R--E--S--S-rrrXXXXX
   395                                         2:OPERATION
   396                                         3:CONSTANT
   397                                         -----------------------------
   398                                         read (reg[rrr]);
   399                                         reg[7] = reg[rrr] OPERATION CONSTANT;
   400                                         if (!reg[7])
   401                                           IC += ADDRESS;
   402                                         else
   403                                           IC += 2;
   404                                         */
   405 
   406 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
   407                                         to an operation on register:
   408                                         1:A--D--D--R--E--S--S-rrrXXXXX
   409                                         2:OPERATION
   410                                         3:RRR
   411                                         -----------------------------
   412                                         read (reg[rrr]);
   413                                         reg[7] = reg[rrr] OPERATION reg[RRR];
   414                                         if (!reg[7])
   415                                           IC += ADDRESS;
   416                                         else
   417                                           IC += 2;
   418                                         */
   419 
   420 #define CCL_Extension           0x1F /* Extended CCL code
   421                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX
   422                                         2:ARGUMENT
   423                                         3:...
   424                                         ------------------------------
   425                                         extended_command (rrr,RRR,Rrr,ARGS)
   426                                       */
   427 
   428 /*
   429    Here after, Extended CCL Instructions.
   430    Bit length of extended command is 14.
   431    Therefore, the instruction code range is 0..16384(0x3fff).
   432  */
   433 
   434 /* Read a multibyte character.
   435    A code point is stored into reg[rrr].  A charset ID is stored into
   436    reg[RRR].  */
   437 
   438 #define CCL_ReadMultibyteChar2  0x00 /* Read Multibyte Character
   439                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   440 
   441 /* Write a multibyte character.
   442    Write a character whose code point is reg[rrr] and the charset ID
   443    is reg[RRR].  */
   444 
   445 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
   446                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   447 
   448 /* Translate a character whose code point is reg[rrr] and the charset
   449    ID is reg[RRR] by a translation table whose ID is reg[Rrr].
   450 
   451    A translated character is set in reg[rrr] (code point) and reg[RRR]
   452    (charset ID).  */
   453 
   454 #define CCL_TranslateCharacter  0x02 /* Translate a multibyte character
   455                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   456 
   457 /* Translate a character whose code point is reg[rrr] and the charset
   458    ID is reg[RRR] by a translation table whose ID is ARGUMENT.
   459 
   460    A translated character is set in reg[rrr] (code point) and reg[RRR]
   461    (charset ID).  */
   462 
   463 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
   464                                                1:ExtendedCOMMNDRrrRRRrrrXXXXX
   465                                                2:ARGUMENT(Translation Table ID)
   466                                             */
   467 
   468 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
   469    reg[RRR]) MAP until some value is found.
   470 
   471    Each MAP is a Lisp vector whose element is number, nil, t, or
   472    lambda.
   473    If the element is nil, ignore the map and proceed to the next map.
   474    If the element is t or lambda, finish without changing reg[rrr].
   475    If the element is a number, set reg[rrr] to the number and finish.
   476 
   477    Detail of the map structure is described in the comment for
   478    CCL_MapMultiple below.  */
   479 
   480 #define CCL_IterateMultipleMap  0x10 /* Iterate multiple maps
   481                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
   482                                         2:NUMBER of MAPs
   483                                         3:MAP-ID1
   484                                         4:MAP-ID2
   485                                         ...
   486                                      */
   487 
   488 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
   489    reg[RRR]) map.
   490 
   491    MAPs are supplied in the succeeding CCL codes as follows:
   492 
   493    When CCL program gives this nested structure of map to this command:
   494         ((MAP-ID11
   495           MAP-ID12
   496           (MAP-ID121 MAP-ID122 MAP-ID123)
   497           MAP-ID13)
   498          (MAP-ID21
   499           (MAP-ID211 (MAP-ID2111) MAP-ID212)
   500           MAP-ID22)),
   501    the compiled CCL codes has this sequence:
   502         CCL_MapMultiple (CCL code of this command)
   503         16 (total number of MAPs and SEPARATORs)
   504         -7 (1st SEPARATOR)
   505         MAP-ID11
   506         MAP-ID12
   507         -3 (2nd SEPARATOR)
   508         MAP-ID121
   509         MAP-ID122
   510         MAP-ID123
   511         MAP-ID13
   512         -7 (3rd SEPARATOR)
   513         MAP-ID21
   514         -4 (4th SEPARATOR)
   515         MAP-ID211
   516         -1 (5th SEPARATOR)
   517         MAP_ID2111
   518         MAP-ID212
   519         MAP-ID22
   520 
   521    A value of each SEPARATOR follows this rule:
   522         MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
   523         SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
   524 
   525    (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
   526 
   527    When some map fails to map (i.e. it doesn't have a value for
   528    reg[rrr]), the mapping is treated as identity.
   529 
   530    The mapping is iterated for all maps in each map set (set of maps
   531    separated by SEPARATOR) except in the case that lambda is
   532    encountered.  More precisely, the mapping proceeds as below:
   533 
   534    At first, VAL0 is set to reg[rrr], and it is translated by the
   535    first map to VAL1.  Then, VAL1 is translated by the next map to
   536    VAL2.  This mapping is iterated until the last map is used.  The
   537    result of the mapping is the last value of VAL?.  When the mapping
   538    process reached to the end of the map set, it moves to the next
   539    map set.  If the next does not exit, the mapping process terminates,
   540    and regard the last value as a result.
   541 
   542    But, when VALm is mapped to VALn and VALn is not a number, the
   543    mapping proceed as below:
   544 
   545    If VALn is nil, the last map is ignored and the mapping of VALm
   546    proceed to the next map.
   547 
   548    In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
   549    proceed to the next map.
   550 
   551    If VALn is lambda, move to the next map set like reaching to the
   552    end of the current map set.
   553 
   554    If VALn is a symbol, call the CCL program referred by it.
   555    Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
   556    Such special values are regarded as nil, t, and lambda respectively.
   557 
   558    Each map is a Lisp vector of the following format (a) or (b):
   559         (a)......[STARTPOINT VAL1 VAL2 ...]
   560         (b)......[t VAL STARTPOINT ENDPOINT],
   561    where
   562         STARTPOINT is an offset to be used for indexing a map,
   563         ENDPOINT is a maximum index number of a map,
   564         VAL and VALn is a number, nil, t, or lambda.
   565 
   566    Valid index range of a map of type (a) is:
   567         STARTPOINT <= index < STARTPOINT + map_size - 1
   568    Valid index range of a map of type (b) is:
   569         STARTPOINT <= index < ENDPOINT  */
   570 
   571 #define CCL_MapMultiple 0x11    /* Mapping by multiple code conversion maps
   572                                          1:ExtendedCOMMNDXXXRRRrrrXXXXX
   573                                          2:N-2
   574                                          3:SEPARATOR_1 (< 0)
   575                                          4:MAP-ID_1
   576                                          5:MAP-ID_2
   577                                          ...
   578                                          M:SEPARATOR_x (< 0)
   579                                          M+1:MAP-ID_y
   580                                          ...
   581                                          N:SEPARATOR_z (< 0)
   582                                       */
   583 
   584 #define MAX_MAP_SET_LEVEL 30
   585 
   586 typedef struct
   587 {
   588   int rest_length;
   589   int orig_val;
   590 } tr_stack;
   591 
   592 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
   593 static tr_stack *mapping_stack_pointer;
   594 
   595 /* If this variable is non-zero, it indicates the stack_idx
   596    of immediately called by CCL_MapMultiple. */
   597 static int stack_idx_of_map_multiple;
   598 
   599 #define PUSH_MAPPING_STACK(restlen, orig)               \
   600 do                                                      \
   601   {                                                     \
   602     mapping_stack_pointer->rest_length = (restlen);     \
   603     mapping_stack_pointer->orig_val = (orig);           \
   604     mapping_stack_pointer++;                            \
   605   }                                                     \
   606 while (0)
   607 
   608 #define POP_MAPPING_STACK(restlen, orig)                \
   609 do                                                      \
   610   {                                                     \
   611     mapping_stack_pointer--;                            \
   612     (restlen) = mapping_stack_pointer->rest_length;     \
   613     (orig) = mapping_stack_pointer->orig_val;           \
   614   }                                                     \
   615 while (0)
   616 
   617 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic)            \
   618 do                                                              \
   619   {                                                             \
   620     struct ccl_program called_ccl;                              \
   621     if (stack_idx >= 256                                        \
   622         || ! setup_ccl_program (&called_ccl, (symbol)))         \
   623       {                                                         \
   624         if (stack_idx > 0)                                      \
   625           {                                                     \
   626             ccl_prog = ccl_prog_stack_struct[0].ccl_prog;       \
   627             ic = ccl_prog_stack_struct[0].ic;                   \
   628             eof_ic = ccl_prog_stack_struct[0].eof_ic;           \
   629           }                                                     \
   630         CCL_INVALID_CMD;                                        \
   631       }                                                         \
   632     ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;       \
   633     ccl_prog_stack_struct[stack_idx].ic = (ret_ic);             \
   634     ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;           \
   635     stack_idx++;                                                \
   636     ccl_prog = called_ccl.prog;                                 \
   637     ic = CCL_HEADER_MAIN;                                       \
   638     eof_ic = XFIXNAT (ccl_prog[CCL_HEADER_EOF]);                \
   639     goto ccl_repeat;                                            \
   640   }                                                             \
   641 while (0)
   642 
   643 #define CCL_MapSingle           0x12 /* Map by single code conversion map
   644                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
   645                                         2:MAP-ID
   646                                         ------------------------------
   647                                         Map reg[rrr] by MAP-ID.
   648                                         If some valid mapping is found,
   649                                           set reg[rrr] to the result,
   650                                         else
   651                                           set reg[RRR] to -1.
   652                                      */
   653 
   654 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
   655                                       integer key.  Afterwards R7 set
   656                                       to 1 if lookup succeeded.
   657                                       1:ExtendedCOMMNDRrrRRRXXXXXXXX
   658                                       2:ARGUMENT(Hash table ID) */
   659 
   660 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
   661                                        character key.  Afterwards R7 set
   662                                        to 1 if lookup succeeded.
   663                                        1:ExtendedCOMMNDRrrRRRrrrXXXXX
   664                                        2:ARGUMENT(Hash table ID) */
   665 
   666 /* CCL arithmetic/logical operators. */
   667 #define CCL_PLUS        0x00    /* X = Y + Z */
   668 #define CCL_MINUS       0x01    /* X = Y - Z */
   669 #define CCL_MUL         0x02    /* X = Y * Z */
   670 #define CCL_DIV         0x03    /* X = Y / Z */
   671 #define CCL_MOD         0x04    /* X = Y % Z */
   672 #define CCL_AND         0x05    /* X = Y & Z */
   673 #define CCL_OR          0x06    /* X = Y | Z */
   674 #define CCL_XOR         0x07    /* X = Y ^ Z */
   675 #define CCL_LSH         0x08    /* X = Y << Z */
   676 #define CCL_RSH         0x09    /* X = Y >> Z */
   677 #define CCL_LSH8        0x0A    /* X = (Y << 8) | Z */
   678 #define CCL_RSH8        0x0B    /* X = Y >> 8, r[7] = Y & 0xFF  */
   679 #define CCL_DIVMOD      0x0C    /* X = Y / Z, r[7] = Y % Z */
   680 #define CCL_LS          0x10    /* X = (X < Y) */
   681 #define CCL_GT          0x11    /* X = (X > Y) */
   682 #define CCL_EQ          0x12    /* X = (X == Y) */
   683 #define CCL_LE          0x13    /* X = (X <= Y) */
   684 #define CCL_GE          0x14    /* X = (X >= Y) */
   685 #define CCL_NE          0x15    /* X = (X != Y) */
   686 
   687 #define CCL_DECODE_SJIS 0x16    /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
   688                                    r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
   689 #define CCL_ENCODE_SJIS 0x17    /* X = HIGHER_BYTE (SJIS (Y, Z))
   690                                    r[7] = LOWER_BYTE (SJIS (Y, Z) */
   691 
   692 /* Terminate CCL program successfully.  */
   693 #define CCL_SUCCESS                     \
   694 do                                      \
   695   {                                     \
   696     ccl->status = CCL_STAT_SUCCESS;     \
   697     goto ccl_finish;                    \
   698   }                                     \
   699 while (0)
   700 
   701 /* Suspend CCL program because of reading from empty input buffer or
   702    writing to full output buffer.  When this program is resumed, the
   703    same I/O command is executed.  */
   704 #define CCL_SUSPEND(stat)       \
   705 do                              \
   706   {                             \
   707     ic--;                       \
   708     ccl->status = stat;         \
   709     goto ccl_finish;            \
   710   }                             \
   711 while (0)
   712 
   713 /* Terminate CCL program because of invalid command.  Should not occur
   714    in the normal case.  */
   715 #ifndef CCL_DEBUG
   716 
   717 #define CCL_INVALID_CMD                 \
   718 do                                      \
   719   {                                     \
   720     ccl->status = CCL_STAT_INVALID_CMD; \
   721     goto ccl_error_handler;             \
   722   }                                     \
   723 while (0)
   724 
   725 #else
   726 
   727 #define CCL_INVALID_CMD                 \
   728 do                                      \
   729   {                                     \
   730     ccl_debug_hook (this_ic);           \
   731     ccl->status = CCL_STAT_INVALID_CMD; \
   732     goto ccl_error_handler;             \
   733   }                                     \
   734 while (0)
   735 
   736 #endif
   737 
   738 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
   739    <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>.  */
   740 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
   741 
   742 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi)                \
   743   do                                                            \
   744     {                                                           \
   745       EMACS_INT prog_word = XFIXNUM ((ccl_prog)[ic]);           \
   746       if (! ASCENDING_ORDER (lo, prog_word, hi))                \
   747         CCL_INVALID_CMD;                                        \
   748       (var) = prog_word;                                        \
   749     }                                                           \
   750   while (0)
   751 
   752 #define GET_CCL_CODE(code, ccl_prog, ic)                        \
   753   GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
   754 
   755 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
   756 
   757 /* Encode one character CH to multibyte form and write to the current
   758    output buffer.  If CH is less than 256, CH is written as is.  */
   759 #define CCL_WRITE_CHAR(ch)                      \
   760   do {                                          \
   761     if (! dst)                                  \
   762       CCL_INVALID_CMD;                          \
   763     else if (dst < dst_end)                     \
   764       *dst++ = (ch);                            \
   765     else                                        \
   766       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);    \
   767   } while (0)
   768 
   769 /* Write a string at ccl_prog[IC] of length LEN to the current output
   770    buffer.  */
   771 #define CCL_WRITE_STRING(len)                                   \
   772   do {                                                          \
   773     int ccli;                                                   \
   774     if (!dst)                                                   \
   775       CCL_INVALID_CMD;                                          \
   776     else if (dst + len <= dst_end)                              \
   777       {                                                         \
   778         if (XFIXNAT (ccl_prog[ic]) & 0x1000000)         \
   779           for (ccli = 0; ccli < len; ccli++)                    \
   780             *dst++ = XFIXNAT (ccl_prog[ic + ccli]) & 0xFFFFFF;  \
   781         else                                                    \
   782           for (ccli = 0; ccli < len; ccli++)                    \
   783             *dst++ = ((XFIXNAT (ccl_prog[ic + (ccli / 3)]))     \
   784                       >> ((2 - (ccli % 3)) * 8)) & 0xFF;        \
   785       }                                                         \
   786     else                                                        \
   787       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);                    \
   788   } while (0)
   789 
   790 /* Read one byte from the current input buffer into Rth register.  */
   791 #define CCL_READ_CHAR(r)                        \
   792   do {                                          \
   793     if (! src)                                  \
   794       CCL_INVALID_CMD;                          \
   795     else if (src < src_end)                     \
   796       r = *src++;                               \
   797     else if (ccl->last_block)                   \
   798       {                                         \
   799         r = -1;                                 \
   800         ic = ccl->eof_ic;                       \
   801         goto ccl_repeat;                        \
   802       }                                         \
   803     else                                        \
   804       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);    \
   805     } while (0)
   806 
   807 /* Decode CODE by a charset whose id is ID.  If ID is 0, return CODE
   808    as is for backward compatibility.  Assume that we can use the
   809    variable `charset'.  */
   810 
   811 #define CCL_DECODE_CHAR(id, code)       \
   812   ((id) == 0 ? (code)                   \
   813    : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
   814 
   815 /* Encode character C by some of charsets in CHARSET_LIST.  Set ID to
   816    the id of the used charset, ENCODED to the result of encoding.
   817    Assume that we can use the variable `charset'.  */
   818 
   819 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded)           \
   820   do {                                                          \
   821     unsigned ncode;                                             \
   822                                                                 \
   823     charset = char_charset ((c), (charset_list), &ncode);       \
   824     if (! charset && ! NILP (charset_list))                     \
   825       charset = char_charset ((c), Qnil, &ncode);               \
   826     if (charset)                                                \
   827       {                                                         \
   828         (id) = CHARSET_ID (charset);                            \
   829         (encoded) = ncode;                                      \
   830       }                                                         \
   831    } while (0)
   832 
   833 /* Execute CCL code on characters at SOURCE (length SRC_SIZE).  The
   834    resulting text goes to a place pointed by DESTINATION, the length
   835    of which should not exceed DST_SIZE.  As a side effect, how many
   836    characters are consumed and produced are recorded in CCL->consumed
   837    and CCL->produced, and the contents of CCL registers are updated.
   838    If SOURCE or DESTINATION is NULL, only operations on registers are
   839    permitted.  */
   840 
   841 #ifdef CCL_DEBUG
   842 #define CCL_DEBUG_BACKTRACE_LEN 256
   843 int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
   844 int ccl_backtrace_idx;
   845 
   846 int
   847 ccl_debug_hook (int ic)
   848 {
   849   return ic;
   850 }
   851 
   852 #endif
   853 
   854 struct ccl_prog_stack
   855   {
   856     Lisp_Object *ccl_prog;      /* Pointer to an array of CCL code.  */
   857     int ic;                     /* Instruction Counter.  */
   858     int eof_ic;                 /* Instruction Counter to jump on EOF.  */
   859   };
   860 
   861 /* For the moment, we only support depth 256 of stack.  */
   862 static struct ccl_prog_stack ccl_prog_stack_struct[256];
   863 
   864 /* Return a translation table of id number ID.  */
   865 static inline Lisp_Object
   866 GET_TRANSLATION_TABLE (int id)
   867 {
   868   return XCDR (XVECTOR (Vtranslation_table_vector)->contents[id]);
   869 }
   870 
   871 void
   872 ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
   873 {
   874   register int *reg = ccl->reg;
   875   register int ic = ccl->ic;
   876   register int code = 0, field1, field2;
   877   register Lisp_Object *ccl_prog = ccl->prog;
   878   int *src = source, *src_end = src + src_size;
   879   int *dst = destination, *dst_end = dst + dst_size;
   880   int jump_address;
   881   int i = 0, j, op;
   882   int stack_idx = ccl->stack_idx;
   883   /* Instruction counter of the current CCL code. */
   884   int this_ic = 0;
   885   struct charset *charset;
   886   int eof_ic = ccl->eof_ic;
   887   int eof_hit = 0;
   888 
   889   if (ccl->buf_magnification == 0) /* We can't read/produce any bytes.  */
   890     dst = NULL;
   891 
   892   /* Set mapping stack pointer. */
   893   mapping_stack_pointer = mapping_stack;
   894 
   895 #ifdef CCL_DEBUG
   896   ccl_backtrace_idx = 0;
   897 #endif
   898 
   899   for (;;)
   900     {
   901     ccl_repeat:
   902 #ifdef CCL_DEBUG
   903       ccl_backtrace_table[ccl_backtrace_idx++] = ic;
   904       if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
   905         ccl_backtrace_idx = 0;
   906       ccl_backtrace_table[ccl_backtrace_idx] = 0;
   907 #endif
   908 
   909       if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
   910         {
   911           /* We can't just signal Qquit, instead break the loop as if
   912              the whole data is processed.  Don't reset Vquit_flag, it
   913              must be handled later at a safer place.  */
   914           if (src)
   915             src = source + src_size;
   916           ccl->status = CCL_STAT_QUIT;
   917           break;
   918         }
   919 
   920       this_ic = ic;
   921       GET_CCL_CODE (code, ccl_prog, ic++);
   922       field1 = code >> 8;
   923       field2 = (code & 0xFF) >> 5;
   924 
   925 #define rrr field2
   926 #define RRR (field1 & 7)
   927 #define Rrr ((field1 >> 3) & 7)
   928 #define ADDR field1
   929 #define EXCMD (field1 >> 6)
   930 
   931       switch (code & 0x1F)
   932         {
   933         case CCL_SetRegister:   /* 00000000000000000RRRrrrXXXXX */
   934           reg[rrr] = reg[RRR];
   935           break;
   936 
   937         case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
   938           reg[rrr] = field1;
   939           break;
   940 
   941         case CCL_SetConst:      /* 00000000000000000000rrrXXXXX */
   942           reg[rrr] = XFIXNUM (ccl_prog[ic++]);
   943           break;
   944 
   945         case CCL_SetArray:      /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
   946           i = reg[RRR];
   947           j = field1 >> 3;
   948           if (0 <= i && i < j)
   949             reg[rrr] = XFIXNUM (ccl_prog[ic + i]);
   950           ic += j;
   951           break;
   952 
   953         case CCL_Jump:          /* A--D--D--R--E--S--S-000XXXXX */
   954           ic += ADDR;
   955           break;
   956 
   957         case CCL_JumpCond:      /* A--D--D--R--E--S--S-rrrXXXXX */
   958           if (!reg[rrr])
   959             ic += ADDR;
   960           break;
   961 
   962         case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   963           i = reg[rrr];
   964           CCL_WRITE_CHAR (i);
   965           ic += ADDR;
   966           break;
   967 
   968         case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   969           i = reg[rrr];
   970           CCL_WRITE_CHAR (i);
   971           ic++;
   972           CCL_READ_CHAR (reg[rrr]);
   973           ic += ADDR - 1;
   974           break;
   975 
   976         case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
   977           i = XFIXNUM (ccl_prog[ic]);
   978           CCL_WRITE_CHAR (i);
   979           ic += ADDR;
   980           break;
   981 
   982         case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   983           i = XFIXNUM (ccl_prog[ic]);
   984           CCL_WRITE_CHAR (i);
   985           ic++;
   986           CCL_READ_CHAR (reg[rrr]);
   987           ic += ADDR - 1;
   988           break;
   989 
   990         case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
   991           j = XFIXNUM (ccl_prog[ic++]);
   992           CCL_WRITE_STRING (j);
   993           ic += ADDR - 1;
   994           break;
   995 
   996         case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   997           i = reg[rrr];
   998           j = XFIXNUM (ccl_prog[ic]);
   999           if (0 <= i && i < j)
  1000             {
  1001               i = XFIXNUM (ccl_prog[ic + 1 + i]);
  1002               CCL_WRITE_CHAR (i);
  1003             }
  1004           ic += j + 2;
  1005           CCL_READ_CHAR (reg[rrr]);
  1006           ic += ADDR - (j + 2);
  1007           break;
  1008 
  1009         case CCL_ReadJump:      /* A--D--D--R--E--S--S-rrrYYYYY */
  1010           CCL_READ_CHAR (reg[rrr]);
  1011           ic += ADDR;
  1012           break;
  1013 
  1014         case CCL_ReadBranch:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1015           CCL_READ_CHAR (reg[rrr]);
  1016           FALLTHROUGH;
  1017         case CCL_Branch:        /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1018         {
  1019           int ioff = 0 <= reg[rrr] && reg[rrr] < field1 ? reg[rrr] : field1;
  1020           int incr = XFIXNUM (ccl_prog[ic + ioff]);
  1021           ic += incr;
  1022         }
  1023           break;
  1024 
  1025         case CCL_ReadRegister:  /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
  1026           while (1)
  1027             {
  1028               CCL_READ_CHAR (reg[rrr]);
  1029               if (!field1) break;
  1030               GET_CCL_CODE (code, ccl_prog, ic++);
  1031               field1 = code >> 8;
  1032               field2 = (code & 0xFF) >> 5;
  1033             }
  1034           break;
  1035 
  1036         case CCL_WriteExprConst:  /* 1:00000OPERATION000RRR000XXXXX */
  1037           rrr = 7;
  1038           i = reg[RRR];
  1039           j = XFIXNUM (ccl_prog[ic]);
  1040           op = field1 >> 6;
  1041           jump_address = ic + 1;
  1042           goto ccl_set_expr;
  1043 
  1044         case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1045           while (1)
  1046             {
  1047               i = reg[rrr];
  1048               CCL_WRITE_CHAR (i);
  1049               if (!field1) break;
  1050               GET_CCL_CODE (code, ccl_prog, ic++);
  1051               field1 = code >> 8;
  1052               field2 = (code & 0xFF) >> 5;
  1053             }
  1054           break;
  1055 
  1056         case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
  1057           rrr = 7;
  1058           i = reg[RRR];
  1059           j = reg[Rrr];
  1060           op = field1 >> 6;
  1061           jump_address = ic;
  1062           goto ccl_set_expr;
  1063 
  1064         case CCL_Call:          /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
  1065           {
  1066             Lisp_Object slot;
  1067             int prog_id;
  1068 
  1069             /* If FFF is nonzero, the CCL program ID is in the
  1070                following code.  */
  1071             if (rrr)
  1072               prog_id = XFIXNUM (ccl_prog[ic++]);
  1073             else
  1074               prog_id = field1;
  1075 
  1076             if (stack_idx >= 256
  1077                 || prog_id < 0
  1078                 || prog_id >= ASIZE (Vccl_program_table)
  1079                 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
  1080                 || !VECTORP (AREF (slot, 1)))
  1081               {
  1082                 if (stack_idx > 0)
  1083                   {
  1084                     ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
  1085                     ic = ccl_prog_stack_struct[0].ic;
  1086                     eof_ic = ccl_prog_stack_struct[0].eof_ic;
  1087                   }
  1088                 CCL_INVALID_CMD;
  1089               }
  1090 
  1091             ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
  1092             ccl_prog_stack_struct[stack_idx].ic = ic;
  1093             ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
  1094             stack_idx++;
  1095             ccl_prog = XVECTOR (AREF (slot, 1))->contents;
  1096             ic = CCL_HEADER_MAIN;
  1097             eof_ic = XFIXNAT (ccl_prog[CCL_HEADER_EOF]);
  1098           }
  1099           break;
  1100 
  1101         case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1102           if (!rrr)
  1103             CCL_WRITE_CHAR (field1);
  1104           else
  1105             {
  1106               CCL_WRITE_STRING (field1);
  1107               ic += (field1 + 2) / 3;
  1108             }
  1109           break;
  1110 
  1111         case CCL_WriteArray:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1112           i = reg[rrr];
  1113           if (0 <= i && i < field1)
  1114             {
  1115               j = XFIXNUM (ccl_prog[ic + i]);
  1116               CCL_WRITE_CHAR (j);
  1117             }
  1118           ic += field1;
  1119           break;
  1120 
  1121         case CCL_End:           /* 0000000000000000000000XXXXX */
  1122           if (stack_idx > 0)
  1123             {
  1124               stack_idx--;
  1125               ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
  1126               ic = ccl_prog_stack_struct[stack_idx].ic;
  1127               eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
  1128               if (eof_hit)
  1129                 ic = eof_ic;
  1130               break;
  1131             }
  1132           if (src)
  1133             src = src_end;
  1134           /* ccl->ic should points to this command code again to
  1135              suppress further processing.  */
  1136           ic--;
  1137           CCL_SUCCESS;
  1138 
  1139         case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
  1140           i = XFIXNUM (ccl_prog[ic++]);
  1141           op = field1 >> 6;
  1142           goto ccl_expr_self;
  1143 
  1144         case CCL_ExprSelfReg:   /* 00000OPERATION000RRRrrrXXXXX */
  1145           i = reg[RRR];
  1146           op = field1 >> 6;
  1147 
  1148         ccl_expr_self:
  1149           switch (op)
  1150             {
  1151             case CCL_PLUS: INT_ADD_WRAPV (reg[rrr], i, &reg[rrr]); break;
  1152             case CCL_MINUS: INT_SUBTRACT_WRAPV (reg[rrr], i, &reg[rrr]); break;
  1153             case CCL_MUL: INT_MULTIPLY_WRAPV (reg[rrr], i, &reg[rrr]); break;
  1154             case CCL_DIV:
  1155               if (!i)
  1156                 CCL_INVALID_CMD;
  1157               if (!INT_DIVIDE_OVERFLOW (reg[rrr], i))
  1158                 reg[rrr] /= i;
  1159               break;
  1160             case CCL_MOD:
  1161               if (!i)
  1162                 CCL_INVALID_CMD;
  1163               reg[rrr] = i == -1 ? 0 : reg[rrr] % i;
  1164               break;
  1165             case CCL_AND: reg[rrr] &= i; break;
  1166             case CCL_OR: reg[rrr] |= i; break;
  1167             case CCL_XOR: reg[rrr] ^= i; break;
  1168             case CCL_LSH:
  1169               if (i < 0)
  1170                 CCL_INVALID_CMD;
  1171               reg[rrr] = i < UINT_WIDTH ? (unsigned) reg[rrr] << i : 0;
  1172               break;
  1173             case CCL_RSH:
  1174               if (i < 0)
  1175                 CCL_INVALID_CMD;
  1176               reg[rrr] = reg[rrr] >> min (i, INT_WIDTH - 1);
  1177               break;
  1178             case CCL_LSH8:
  1179               reg[rrr] = (unsigned) reg[rrr] << 8;
  1180               reg[rrr] |= i;
  1181               break;
  1182             case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
  1183             case CCL_DIVMOD:
  1184               if (!i)
  1185                 CCL_INVALID_CMD;
  1186               if (i == -1)
  1187                 {
  1188                   reg[7] = 0;
  1189                   INT_SUBTRACT_WRAPV (0, reg[rrr], &reg[rrr]);
  1190                 }
  1191               else
  1192                 {
  1193                   reg[7] = reg[rrr] % i;
  1194                   reg[rrr] /= i;
  1195                 }
  1196               break;
  1197             case CCL_LS: reg[rrr] = reg[rrr] < i; break;
  1198             case CCL_GT: reg[rrr] = reg[rrr] > i; break;
  1199             case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
  1200             case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
  1201             case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
  1202             case CCL_NE: reg[rrr] = reg[rrr] != i; break;
  1203             default: CCL_INVALID_CMD;
  1204             }
  1205           break;
  1206 
  1207         case CCL_SetExprConst:  /* 00000OPERATION000RRRrrrXXXXX */
  1208           i = reg[RRR];
  1209           j = XFIXNUM (ccl_prog[ic++]);
  1210           op = field1 >> 6;
  1211           jump_address = ic;
  1212           goto ccl_set_expr;
  1213 
  1214         case CCL_SetExprReg:    /* 00000OPERATIONRrrRRRrrrXXXXX */
  1215           i = reg[RRR];
  1216           j = reg[Rrr];
  1217           op = field1 >> 6;
  1218           jump_address = ic;
  1219           goto ccl_set_expr;
  1220 
  1221         case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
  1222           CCL_READ_CHAR (reg[rrr]);
  1223           FALLTHROUGH;
  1224         case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
  1225           i = reg[rrr];
  1226           jump_address = ic + ADDR;
  1227           op = XFIXNUM (ccl_prog[ic++]);
  1228           j = XFIXNUM (ccl_prog[ic++]);
  1229           rrr = 7;
  1230           goto ccl_set_expr;
  1231 
  1232         case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
  1233           CCL_READ_CHAR (reg[rrr]);
  1234           FALLTHROUGH;
  1235         case CCL_JumpCondExprReg:
  1236           i = reg[rrr];
  1237           jump_address = ic + ADDR;
  1238           op = XFIXNUM (ccl_prog[ic++]);
  1239           GET_CCL_RANGE (j, ccl_prog, ic++, 0, 7);
  1240           j = reg[j];
  1241           rrr = 7;
  1242 
  1243         ccl_set_expr:
  1244           switch (op)
  1245             {
  1246             case CCL_PLUS: INT_ADD_WRAPV (i, j, &reg[rrr]); break;
  1247             case CCL_MINUS: INT_SUBTRACT_WRAPV (i, j, &reg[rrr]); break;
  1248             case CCL_MUL: INT_MULTIPLY_WRAPV (i, j, &reg[rrr]); break;
  1249             case CCL_DIV:
  1250               if (!j)
  1251                 CCL_INVALID_CMD;
  1252               if (!INT_DIVIDE_OVERFLOW (i, j))
  1253                 i /= j;
  1254               reg[rrr] = i;
  1255               break;
  1256             case CCL_MOD:
  1257               if (!j)
  1258                 CCL_INVALID_CMD;
  1259               reg[rrr] = j == -1 ? 0 : i % j;
  1260               break;
  1261             case CCL_AND: reg[rrr] = i & j; break;
  1262             case CCL_OR: reg[rrr] = i | j; break;
  1263             case CCL_XOR: reg[rrr] = i ^ j; break;
  1264             case CCL_LSH:
  1265               if (j < 0)
  1266                 CCL_INVALID_CMD;
  1267               reg[rrr] = j < UINT_WIDTH ? (unsigned) i << j : 0;
  1268               break;
  1269             case CCL_RSH:
  1270               if (j < 0)
  1271                 CCL_INVALID_CMD;
  1272               reg[rrr] = i >> min (j, INT_WIDTH - 1);
  1273               break;
  1274             case CCL_LSH8:
  1275               reg[rrr] = ((unsigned) i << 8) | j;
  1276               break;
  1277             case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
  1278             case CCL_DIVMOD:
  1279               if (!j)
  1280                 CCL_INVALID_CMD;
  1281               if (j == -1)
  1282                 {
  1283                   INT_SUBTRACT_WRAPV (0, reg[rrr], &reg[rrr]);
  1284                   reg[7] = 0;
  1285                 }
  1286               else
  1287                 {
  1288                   reg[rrr] = i / j;
  1289                   reg[7] = i % j;
  1290                 }
  1291               break;
  1292             case CCL_LS: reg[rrr] = i < j; break;
  1293             case CCL_GT: reg[rrr] = i > j; break;
  1294             case CCL_EQ: reg[rrr] = i == j; break;
  1295             case CCL_LE: reg[rrr] = i <= j; break;
  1296             case CCL_GE: reg[rrr] = i >= j; break;
  1297             case CCL_NE: reg[rrr] = i != j; break;
  1298             case CCL_DECODE_SJIS:
  1299               {
  1300                 i = ((unsigned) i << 8) | j;
  1301                 SJIS_TO_JIS (i);
  1302                 reg[rrr] = i >> 8;
  1303                 reg[7] = i & 0xFF;
  1304                 break;
  1305               }
  1306             case CCL_ENCODE_SJIS:
  1307               {
  1308                 i = ((unsigned) i << 8) | j;
  1309                 JIS_TO_SJIS (i);
  1310                 reg[rrr] = i >> 8;
  1311                 reg[7] = i & 0xFF;
  1312                 break;
  1313               }
  1314             default: CCL_INVALID_CMD;
  1315             }
  1316           code &= 0x1F;
  1317           if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
  1318             {
  1319               i = reg[rrr];
  1320               CCL_WRITE_CHAR (i);
  1321               ic = jump_address;
  1322             }
  1323           else if (!reg[rrr])
  1324             ic = jump_address;
  1325           break;
  1326 
  1327         case CCL_Extension:
  1328           switch (EXCMD)
  1329             {
  1330             case CCL_ReadMultibyteChar2:
  1331               if (!src)
  1332                 CCL_INVALID_CMD;
  1333               CCL_READ_CHAR (i);
  1334               CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
  1335               break;
  1336 
  1337             case CCL_WriteMultibyteChar2:
  1338               if (! dst)
  1339                 CCL_INVALID_CMD;
  1340               i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1341               CCL_WRITE_CHAR (i);
  1342               break;
  1343 
  1344             case CCL_TranslateCharacter:
  1345               i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1346               op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
  1347               CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
  1348               break;
  1349 
  1350             case CCL_TranslateCharacterConstTbl:
  1351               {
  1352                 ptrdiff_t eop;
  1353                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1354                                (VECTORP (Vtranslation_table_vector)
  1355                                 ? ASIZE (Vtranslation_table_vector)
  1356                                 : -1));
  1357                 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1358                 op = translate_char (GET_TRANSLATION_TABLE (eop), i);
  1359                 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
  1360               }
  1361               break;
  1362 
  1363             case CCL_LookupIntConstTbl:
  1364               {
  1365                 ptrdiff_t eop;
  1366                 struct Lisp_Hash_Table *h;
  1367                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1368                                (VECTORP (Vtranslation_hash_table_vector)
  1369                                 ? ASIZE (Vtranslation_hash_table_vector)
  1370                                 : -1));
  1371                 h = GET_HASH_TABLE (eop);
  1372 
  1373                 eop = (FIXNUM_OVERFLOW_P (reg[RRR])
  1374                        ? -1
  1375                        : hash_lookup (h, make_fixnum (reg[RRR]), NULL));
  1376                 if (eop >= 0)
  1377                   {
  1378                     Lisp_Object opl;
  1379                     opl = HASH_VALUE (h, eop);
  1380                     if (! (IN_INT_RANGE (eop) && CHARACTERP (opl)))
  1381                       CCL_INVALID_CMD;
  1382                     reg[RRR] = charset_unicode;
  1383                     reg[rrr] = XFIXNUM (opl);
  1384                     reg[7] = 1; /* r7 true for success */
  1385                   }
  1386                 else
  1387                   reg[7] = 0;
  1388               }
  1389               break;
  1390 
  1391             case CCL_LookupCharConstTbl:
  1392               {
  1393                 ptrdiff_t eop;
  1394                 struct Lisp_Hash_Table *h;
  1395                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1396                                (VECTORP (Vtranslation_hash_table_vector)
  1397                                 ? ASIZE (Vtranslation_hash_table_vector)
  1398                                 : -1));
  1399                 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1400                 h = GET_HASH_TABLE (eop);
  1401 
  1402                 eop = (FIXNUM_OVERFLOW_P (i)
  1403                        ? -1
  1404                        : hash_lookup (h, make_fixnum (i), NULL));
  1405                 if (eop >= 0)
  1406                   {
  1407                     Lisp_Object opl;
  1408                     opl = HASH_VALUE (h, eop);
  1409                     if (! (FIXNUMP (opl) && IN_INT_RANGE (XFIXNUM (opl))))
  1410                       CCL_INVALID_CMD;
  1411                     reg[RRR] = XFIXNUM (opl);
  1412                     reg[7] = 1; /* r7 true for success */
  1413                   }
  1414                 else
  1415                   reg[7] = 0;
  1416               }
  1417               break;
  1418 
  1419             case CCL_IterateMultipleMap:
  1420               {
  1421                 Lisp_Object map, content, attrib, value;
  1422                 EMACS_INT point;
  1423                 ptrdiff_t size;
  1424                 int fin_ic;
  1425 
  1426                 j = XFIXNUM (ccl_prog[ic++]); /* number of maps. */
  1427                 fin_ic = ic + j;
  1428                 op = reg[rrr];
  1429                 if ((j > reg[RRR]) && (j >= 0))
  1430                   {
  1431                     ic += reg[RRR];
  1432                     i = reg[RRR];
  1433                   }
  1434                 else
  1435                   {
  1436                     reg[RRR] = -1;
  1437                     ic = fin_ic;
  1438                     break;
  1439                   }
  1440 
  1441                 for (;i < j;i++)
  1442                   {
  1443                     if (!VECTORP (Vcode_conversion_map_vector)) continue;
  1444                     size = ASIZE (Vcode_conversion_map_vector);
  1445                     point = XFIXNUM (ccl_prog[ic++]);
  1446                     if (! (0 <= point && point < size)) continue;
  1447                     map = AREF (Vcode_conversion_map_vector, point);
  1448 
  1449                     /* Check map validity.  */
  1450                     if (!CONSP (map)) continue;
  1451                     map = XCDR (map);
  1452                     if (!VECTORP (map)) continue;
  1453                     size = ASIZE (map);
  1454                     if (size <= 1) continue;
  1455 
  1456                     content = AREF (map, 0);
  1457 
  1458                     /* check map type,
  1459                        [STARTPOINT VAL1 VAL2 ...] or
  1460                        [t ELEMENT STARTPOINT ENDPOINT]  */
  1461                     if (FIXNUMP (content))
  1462                       {
  1463                         point = XFIXNUM (content);
  1464                         if (!(point <= op && op - point + 1 < size)) continue;
  1465                         content = AREF (map, op - point + 1);
  1466                       }
  1467                     else if (EQ (content, Qt))
  1468                       {
  1469                         if (size != 4) continue;
  1470                         if (FIXNUMP (AREF (map, 2))
  1471                             && XFIXNUM (AREF (map, 2)) <= op
  1472                             && FIXNUMP (AREF (map, 3))
  1473                             && op < XFIXNUM (AREF (map, 3)))
  1474                           content = AREF (map, 1);
  1475                         else
  1476                           continue;
  1477                       }
  1478                     else
  1479                       continue;
  1480 
  1481                     if (NILP (content))
  1482                       continue;
  1483                     else if (FIXNUMP (content) && IN_INT_RANGE (XFIXNUM (content)))
  1484                       {
  1485                         reg[RRR] = i;
  1486                         reg[rrr] = XFIXNUM (content);
  1487                         break;
  1488                       }
  1489                     else if (EQ (content, Qt) || EQ (content, Qlambda))
  1490                       {
  1491                         reg[RRR] = i;
  1492                         break;
  1493                       }
  1494                     else if (CONSP (content))
  1495                       {
  1496                         attrib = XCAR (content);
  1497                         value = XCDR (content);
  1498                         if (! (FIXNUMP (attrib) && FIXNUMP (value)
  1499                                && IN_INT_RANGE (XFIXNUM (value))))
  1500                           continue;
  1501                         reg[RRR] = i;
  1502                         reg[rrr] = XFIXNUM (value);
  1503                         break;
  1504                       }
  1505                     else if (SYMBOLP (content))
  1506                       CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
  1507                     else
  1508                       CCL_INVALID_CMD;
  1509                   }
  1510                 if (i == j)
  1511                   reg[RRR] = -1;
  1512                 ic = fin_ic;
  1513               }
  1514               break;
  1515 
  1516             case CCL_MapMultiple:
  1517               {
  1518                 Lisp_Object map, content, attrib, value;
  1519                 EMACS_INT point;
  1520                 ptrdiff_t size, map_vector_size;
  1521                 int map_set_rest_length, fin_ic;
  1522                 int current_ic = this_ic;
  1523 
  1524                 /* inhibit recursive call on MapMultiple. */
  1525                 if (stack_idx_of_map_multiple > 0)
  1526                   {
  1527                     if (stack_idx_of_map_multiple <= stack_idx)
  1528                       {
  1529                         stack_idx_of_map_multiple = 0;
  1530                         mapping_stack_pointer = mapping_stack;
  1531                         CCL_INVALID_CMD;
  1532                       }
  1533                   }
  1534                 else
  1535                   mapping_stack_pointer = mapping_stack;
  1536                 stack_idx_of_map_multiple = 0;
  1537 
  1538                 /* Get number of maps and separators.  */
  1539                 map_set_rest_length = XFIXNUM (ccl_prog[ic++]);
  1540 
  1541                 fin_ic = ic + map_set_rest_length;
  1542                 op = reg[rrr];
  1543 
  1544                 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
  1545                   {
  1546                     ic += reg[RRR];
  1547                     i = reg[RRR];
  1548                     map_set_rest_length -= i;
  1549                   }
  1550                 else
  1551                   {
  1552                     ic = fin_ic;
  1553                     reg[RRR] = -1;
  1554                     mapping_stack_pointer = mapping_stack;
  1555                     break;
  1556                   }
  1557 
  1558                 if (mapping_stack_pointer <= (mapping_stack + 1))
  1559                   {
  1560                     /* Set up initial state. */
  1561                     mapping_stack_pointer = mapping_stack;
  1562                     PUSH_MAPPING_STACK (0, op);
  1563                     reg[RRR] = -1;
  1564                   }
  1565                 else
  1566                   {
  1567                     /* Recover after calling other ccl program. */
  1568                     int orig_op;
  1569 
  1570                     POP_MAPPING_STACK (map_set_rest_length, orig_op);
  1571                     POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1572                     switch (op)
  1573                       {
  1574                       case -1:
  1575                         /* Regard it as Qnil. */
  1576                         op = orig_op;
  1577                         i++;
  1578                         ic++;
  1579                         map_set_rest_length--;
  1580                         break;
  1581                       case -2:
  1582                         /* Regard it as Qt. */
  1583                         op = reg[rrr];
  1584                         i++;
  1585                         ic++;
  1586                         map_set_rest_length--;
  1587                         break;
  1588                       case -3:
  1589                         /* Regard it as Qlambda. */
  1590                         op = orig_op;
  1591                         i += map_set_rest_length;
  1592                         ic += map_set_rest_length;
  1593                         map_set_rest_length = 0;
  1594                         break;
  1595                       default:
  1596                         /* Regard it as normal mapping. */
  1597                         i += map_set_rest_length;
  1598                         ic += map_set_rest_length;
  1599                         POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1600                         break;
  1601                       }
  1602                   }
  1603                 if (!VECTORP (Vcode_conversion_map_vector))
  1604                   CCL_INVALID_CMD;
  1605                 map_vector_size = ASIZE (Vcode_conversion_map_vector);
  1606 
  1607                 do {
  1608                   for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
  1609                     {
  1610                       point = XFIXNUM (ccl_prog[ic]);
  1611                       if (point < 0)
  1612                         {
  1613                           /* +1 is for including separator. */
  1614                           point = -point + 1;
  1615                           if (mapping_stack_pointer
  1616                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
  1617                             CCL_INVALID_CMD;
  1618                           PUSH_MAPPING_STACK (map_set_rest_length - point,
  1619                                               reg[rrr]);
  1620                           map_set_rest_length = point;
  1621                           reg[rrr] = op;
  1622                           continue;
  1623                         }
  1624 
  1625                       if (point >= map_vector_size) continue;
  1626                       map = AREF (Vcode_conversion_map_vector, point);
  1627 
  1628                       /* Check map validity.  */
  1629                       if (!CONSP (map)) continue;
  1630                       map = XCDR (map);
  1631                       if (!VECTORP (map)) continue;
  1632                       size = ASIZE (map);
  1633                       if (size <= 1) continue;
  1634 
  1635                       content = AREF (map, 0);
  1636 
  1637                       /* check map type,
  1638                          [STARTPOINT VAL1 VAL2 ...] or
  1639                          [t ELEMENT STARTPOINT ENDPOINT]  */
  1640                       if (FIXNUMP (content))
  1641                         {
  1642                           point = XFIXNUM (content);
  1643                           if (!(point <= op && op - point + 1 < size)) continue;
  1644                           content = AREF (map, op - point + 1);
  1645                         }
  1646                       else if (EQ (content, Qt))
  1647                         {
  1648                           if (size != 4) continue;
  1649                           if (FIXNUMP (AREF (map, 2))
  1650                               && XFIXNUM (AREF (map, 2)) <= op
  1651                               && FIXNUMP (AREF (map, 3))
  1652                               && op < XFIXNUM (AREF (map, 3)))
  1653                             content = AREF (map, 1);
  1654                           else
  1655                             continue;
  1656                         }
  1657                       else
  1658                         continue;
  1659 
  1660                       if (NILP (content))
  1661                         continue;
  1662 
  1663                       reg[RRR] = i;
  1664                       if (FIXNUMP (content) && IN_INT_RANGE (XFIXNUM (content)))
  1665                         {
  1666                           op = XFIXNUM (content);
  1667                           i += map_set_rest_length - 1;
  1668                           ic += map_set_rest_length - 1;
  1669                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1670                           map_set_rest_length++;
  1671                         }
  1672                       else if (CONSP (content))
  1673                         {
  1674                           attrib = XCAR (content);
  1675                           value = XCDR (content);
  1676                           if (! (FIXNUMP (attrib) && FIXNUMP (value)
  1677                                  && IN_INT_RANGE (XFIXNUM (value))))
  1678                             continue;
  1679                           op = XFIXNUM (value);
  1680                           i += map_set_rest_length - 1;
  1681                           ic += map_set_rest_length - 1;
  1682                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1683                           map_set_rest_length++;
  1684                         }
  1685                       else if (EQ (content, Qt))
  1686                         {
  1687                           op = reg[rrr];
  1688                         }
  1689                       else if (EQ (content, Qlambda))
  1690                         {
  1691                           i += map_set_rest_length;
  1692                           ic += map_set_rest_length;
  1693                           break;
  1694                         }
  1695                       else if (SYMBOLP (content))
  1696                         {
  1697                           if (mapping_stack_pointer
  1698                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
  1699                             CCL_INVALID_CMD;
  1700                           PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1701                           PUSH_MAPPING_STACK (map_set_rest_length, op);
  1702                           stack_idx_of_map_multiple = stack_idx + 1;
  1703                           CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
  1704                         }
  1705                       else
  1706                         CCL_INVALID_CMD;
  1707                     }
  1708                   if (mapping_stack_pointer <= (mapping_stack + 1))
  1709                     break;
  1710                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1711                   i += map_set_rest_length;
  1712                   ic += map_set_rest_length;
  1713                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1714                 } while (1);
  1715 
  1716                 ic = fin_ic;
  1717               }
  1718               reg[rrr] = op;
  1719               break;
  1720 
  1721             case CCL_MapSingle:
  1722               {
  1723                 Lisp_Object map, attrib, value, content;
  1724                 int point;
  1725                 j = XFIXNUM (ccl_prog[ic++]); /* map_id */
  1726                 op = reg[rrr];
  1727                 if (! (VECTORP (Vcode_conversion_map_vector)
  1728                        && j < ASIZE (Vcode_conversion_map_vector)))
  1729                   {
  1730                     reg[RRR] = -1;
  1731                     break;
  1732                   }
  1733                 map = AREF (Vcode_conversion_map_vector, j);
  1734                 if (!CONSP (map))
  1735                   {
  1736                     reg[RRR] = -1;
  1737                     break;
  1738                   }
  1739                 map = XCDR (map);
  1740                 if (! (VECTORP (map)
  1741                        && 0 < ASIZE (map)
  1742                        && FIXNUMP (AREF (map, 0))
  1743                        && XFIXNUM (AREF (map, 0)) <= op
  1744                        && op - XFIXNUM (AREF (map, 0)) + 1 < ASIZE (map)))
  1745                   {
  1746                     reg[RRR] = -1;
  1747                     break;
  1748                   }
  1749                 point = op - XFIXNUM (AREF (map, 0)) + 1;
  1750                 reg[RRR] = 0;
  1751                 content = AREF (map, point);
  1752                 if (NILP (content))
  1753                   reg[RRR] = -1;
  1754                 else if (TYPE_RANGED_FIXNUMP (int, content))
  1755                   reg[rrr] = XFIXNUM (content);
  1756                 else if (EQ (content, Qt));
  1757                 else if (CONSP (content))
  1758                   {
  1759                     attrib = XCAR (content);
  1760                     value = XCDR (content);
  1761                     if (!FIXNUMP (attrib)
  1762                         || !TYPE_RANGED_FIXNUMP (int, value))
  1763                       continue;
  1764                     reg[rrr] = XFIXNUM (value);
  1765                     break;
  1766                   }
  1767                 else if (SYMBOLP (content))
  1768                   CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
  1769                 else
  1770                   reg[RRR] = -1;
  1771               }
  1772               break;
  1773 
  1774             default:
  1775               CCL_INVALID_CMD;
  1776             }
  1777           break;
  1778 
  1779         default:
  1780           CCL_INVALID_CMD;
  1781         }
  1782     }
  1783 
  1784  ccl_error_handler:
  1785   if (destination)
  1786     {
  1787       /* We can insert an error message only if DESTINATION is
  1788          specified and we still have a room to store the message
  1789          there.  */
  1790       char msg[256];
  1791       int msglen;
  1792 
  1793       if (!dst)
  1794         dst = destination;
  1795 
  1796       switch (ccl->status)
  1797         {
  1798         case CCL_STAT_INVALID_CMD:
  1799           msglen = sprintf (msg,
  1800                             "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
  1801                             code & 0x1Fu, code + 0u, this_ic);
  1802 #ifdef CCL_DEBUG
  1803           {
  1804             int i = ccl_backtrace_idx - 1;
  1805             int j;
  1806 
  1807             if (dst + msglen <= (dst_bytes ? dst_end : src))
  1808               {
  1809                 memcpy (dst, msg, msglen);
  1810                 dst += msglen;
  1811               }
  1812 
  1813             for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
  1814               {
  1815                 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
  1816                 if (ccl_backtrace_table[i] == 0)
  1817                   break;
  1818                 msglen = sprintf (msg, " %d", ccl_backtrace_table[i]);
  1819                 if (dst + msglen > (dst_bytes ? dst_end : src))
  1820                   break;
  1821                 memcpy (dst, msg, msglen);
  1822                 dst += msglen;
  1823               }
  1824             goto ccl_finish;
  1825           }
  1826 #endif
  1827           break;
  1828 
  1829         case CCL_STAT_QUIT:
  1830           msglen = ccl->quit_silently ? 0 : sprintf (msg, "\nCCL: Quitted.");
  1831           break;
  1832 
  1833         default:
  1834           msglen = sprintf (msg, "\nCCL: Unknown error type (%d)", ccl->status);
  1835         }
  1836 
  1837       if (msglen <= dst_end - dst)
  1838         {
  1839           for (i = 0; i < msglen; i++)
  1840             *dst++ = msg[i];
  1841         }
  1842 
  1843       if (ccl->status == CCL_STAT_INVALID_CMD)
  1844         {
  1845 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
  1846          results in an invalid multibyte sequence.  */
  1847 
  1848           /* Copy the remaining source data.  */
  1849           int i = src_end - src;
  1850           if (dst_bytes && (dst_end - dst) < i)
  1851             i = dst_end - dst;
  1852           memcpy (dst, src, i);
  1853           src += i;
  1854           dst += i;
  1855 #else
  1856           /* Signal that we've consumed everything.  */
  1857           src = src_end;
  1858 #endif
  1859         }
  1860     }
  1861 
  1862  ccl_finish:
  1863   ccl->ic = ic;
  1864   ccl->stack_idx = stack_idx;
  1865   ccl->prog = ccl_prog;
  1866   ccl->consumed = src - source;
  1867   if (dst != NULL)
  1868     ccl->produced = dst - destination;
  1869   else
  1870     ccl->produced = 0;
  1871 }
  1872 
  1873 /* Resolve symbols in the specified CCL code (Lisp vector).  This
  1874    function converts symbols of code conversion maps and character
  1875    translation tables embedded in the CCL code into their ID numbers.
  1876 
  1877    The return value is a new vector in which all symbols are resolved,
  1878    Qt if resolving of some symbol failed,
  1879    or nil if CCL contains invalid data.  */
  1880 
  1881 static Lisp_Object
  1882 resolve_symbol_ccl_program (Lisp_Object ccl)
  1883 {
  1884   int i, veclen, unresolved = 0;
  1885   Lisp_Object result, contents, val;
  1886 
  1887   if (! (CCL_HEADER_MAIN < ASIZE (ccl) && ASIZE (ccl) <= INT_MAX))
  1888     return Qnil;
  1889   result = Fcopy_sequence (ccl);
  1890   veclen = ASIZE (result);
  1891 
  1892   for (i = 0; i < veclen; i++)
  1893     {
  1894       contents = AREF (result, i);
  1895       if (TYPE_RANGED_FIXNUMP (int, contents))
  1896         continue;
  1897       else if (CONSP (contents)
  1898                && SYMBOLP (XCAR (contents))
  1899                && SYMBOLP (XCDR (contents)))
  1900         {
  1901           /* This is the new style for embedding symbols.  The form is
  1902              (SYMBOL . PROPERTY).  (get SYMBOL PROPERTY) should give
  1903              an index number.  */
  1904           val = Fget (XCAR (contents), XCDR (contents));
  1905           if (RANGED_FIXNUMP (0, val, INT_MAX))
  1906             ASET (result, i, val);
  1907           else
  1908             unresolved = 1;
  1909           continue;
  1910         }
  1911       else if (SYMBOLP (contents))
  1912         {
  1913           /* This is the old style for embedding symbols.  This style
  1914              may lead to a bug if, for instance, a translation table
  1915              and a code conversion map have the same name.  */
  1916           val = Fget (contents, Qtranslation_table_id);
  1917           if (RANGED_FIXNUMP (0, val, INT_MAX))
  1918             ASET (result, i, val);
  1919           else
  1920             {
  1921               val = Fget (contents, Qcode_conversion_map_id);
  1922               if (RANGED_FIXNUMP (0, val, INT_MAX))
  1923                 ASET (result, i, val);
  1924               else
  1925                 {
  1926                   val = Fget (contents, Qccl_program_idx);
  1927                   if (RANGED_FIXNUMP (0, val, INT_MAX))
  1928                     ASET (result, i, val);
  1929                   else
  1930                     unresolved = 1;
  1931                 }
  1932             }
  1933           continue;
  1934         }
  1935       return Qnil;
  1936     }
  1937 
  1938   if (! (0 <= XFIXNUM (AREF (result, CCL_HEADER_BUF_MAG))
  1939          && ASCENDING_ORDER (0, XFIXNUM (AREF (result, CCL_HEADER_EOF)),
  1940                              ASIZE (ccl))))
  1941     return Qnil;
  1942 
  1943   return (unresolved ? Qt : result);
  1944 }
  1945 
  1946 /* Return the compiled code (vector) of CCL program CCL_PROG.
  1947    CCL_PROG is a name (symbol) of the program or already compiled
  1948    code.  If necessary, resolve symbols in the compiled code to index
  1949    numbers.  If we failed to get the compiled code or to resolve
  1950    symbols, return Qnil.  */
  1951 
  1952 static Lisp_Object
  1953 ccl_get_compiled_code (Lisp_Object ccl_prog, ptrdiff_t *idx)
  1954 {
  1955   Lisp_Object val, slot;
  1956 
  1957   if (VECTORP (ccl_prog))
  1958     {
  1959       val = resolve_symbol_ccl_program (ccl_prog);
  1960       *idx = -1;
  1961       return (VECTORP (val) ? val : Qnil);
  1962     }
  1963   if (!SYMBOLP (ccl_prog))
  1964     return Qnil;
  1965 
  1966   val = Fget (ccl_prog, Qccl_program_idx);
  1967   if (! FIXNATP (val)
  1968       || XFIXNUM (val) >= ASIZE (Vccl_program_table))
  1969     return Qnil;
  1970   slot = AREF (Vccl_program_table, XFIXNUM (val));
  1971   if (! VECTORP (slot)
  1972       || ASIZE (slot) != 4
  1973       || ! VECTORP (AREF (slot, 1)))
  1974     return Qnil;
  1975   *idx = XFIXNUM (val);
  1976   if (NILP (AREF (slot, 2)))
  1977     {
  1978       val = resolve_symbol_ccl_program (AREF (slot, 1));
  1979       if (! VECTORP (val))
  1980         return Qnil;
  1981       ASET (slot, 1, val);
  1982       ASET (slot, 2, Qt);
  1983     }
  1984   return AREF (slot, 1);
  1985 }
  1986 
  1987 /* Setup fields of the structure pointed by CCL appropriately for the
  1988    execution of CCL program CCL_PROG.  CCL_PROG is the name (symbol)
  1989    of the CCL program or the already compiled code (vector).
  1990    Return true if successful.
  1991 
  1992    If CCL_PROG is nil, just reset the structure pointed by CCL.  */
  1993 bool
  1994 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
  1995 {
  1996   if (! NILP (ccl_prog))
  1997     {
  1998       struct Lisp_Vector *vp;
  1999 
  2000       ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
  2001       if (! VECTORP (ccl_prog))
  2002         return false;
  2003       vp = XVECTOR (ccl_prog);
  2004       ccl->size = vp->header.size;
  2005       ccl->prog = vp->contents;
  2006       ccl->eof_ic = XFIXNUM (vp->contents[CCL_HEADER_EOF]);
  2007       ccl->buf_magnification = XFIXNUM (vp->contents[CCL_HEADER_BUF_MAG]);
  2008       if (ccl->idx >= 0)
  2009         {
  2010           Lisp_Object slot;
  2011 
  2012           slot = AREF (Vccl_program_table, ccl->idx);
  2013           ASET (slot, 3, Qnil);
  2014         }
  2015     }
  2016   ccl->ic = CCL_HEADER_MAIN;
  2017   memset (ccl->reg, 0, sizeof ccl->reg);
  2018   ccl->last_block = false;
  2019   ccl->status = 0;
  2020   ccl->stack_idx = 0;
  2021   ccl->quit_silently = false;
  2022   return true;
  2023 }
  2024 
  2025 
  2026 DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
  2027        doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
  2028 See the documentation of `define-ccl-program' for the detail of CCL program.  */)
  2029   (Lisp_Object object)
  2030 {
  2031   Lisp_Object val;
  2032 
  2033   if (VECTORP (object))
  2034     {
  2035       val = resolve_symbol_ccl_program (object);
  2036       return (VECTORP (val) ? Qt : Qnil);
  2037     }
  2038   if (!SYMBOLP (object))
  2039     return Qnil;
  2040 
  2041   val = Fget (object, Qccl_program_idx);
  2042   return ((! FIXNATP (val)
  2043            || XFIXNUM (val) >= ASIZE (Vccl_program_table))
  2044           ? Qnil : Qt);
  2045 }
  2046 
  2047 DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
  2048        doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
  2049 
  2050 CCL-PROGRAM is a CCL program name (symbol)
  2051 or compiled code generated by `ccl-compile' (for backward compatibility.
  2052 In the latter case, the execution overhead is bigger than in the former).
  2053 No I/O commands should appear in CCL-PROGRAM.
  2054 
  2055 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
  2056 for the Nth register.
  2057 
  2058 As side effect, each element of REGISTERS holds the value of
  2059 the corresponding register after the execution.
  2060 
  2061 See the documentation of `define-ccl-program' for a definition of CCL
  2062 programs.  */)
  2063   (Lisp_Object ccl_prog, Lisp_Object reg)
  2064 {
  2065   struct ccl_program ccl;
  2066   int i;
  2067 
  2068   if (! setup_ccl_program (&ccl, ccl_prog))
  2069     error ("Invalid CCL program");
  2070 
  2071   CHECK_VECTOR (reg);
  2072   if (ASIZE (reg) != 8)
  2073     error ("Length of vector REGISTERS is not 8");
  2074 
  2075   for (i = 0; i < 8; i++)
  2076     {
  2077       intmax_t n;
  2078       ccl.reg[i] = ((INTEGERP (AREF (reg, i))
  2079                      && integer_to_intmax (AREF (reg, i), &n)
  2080                      && INT_MIN <= n && n <= INT_MAX)
  2081                     ? n : 0);
  2082     }
  2083 
  2084   ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
  2085   maybe_quit ();
  2086   if (ccl.status != CCL_STAT_SUCCESS)
  2087     error ("Error in CCL program at %dth code", ccl.ic);
  2088 
  2089   for (i = 0; i < 8; i++)
  2090     ASET (reg, i, make_int (ccl.reg[i]));
  2091   return Qnil;
  2092 }
  2093 
  2094 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
  2095        3, 5, 0,
  2096        doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
  2097 
  2098 CCL-PROGRAM is a symbol registered by `register-ccl-program',
  2099 or a compiled code generated by `ccl-compile' (for backward compatibility,
  2100 in this case, the execution is slower).
  2101 
  2102 Read buffer is set to STRING, and write buffer is allocated automatically.
  2103 
  2104 STATUS is a vector of [R0 R1 ... R7 IC], where
  2105  R0..R7 are initial values of corresponding registers,
  2106  IC is the instruction counter specifying from where to start the program.
  2107 If R0..R7 are nil, they are initialized to 0.
  2108 If IC is nil, it is initialized to head of the CCL program.
  2109 
  2110 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
  2111 when read buffer is exhausted, else, IC is always set to the end of
  2112 CCL-PROGRAM on exit.
  2113 
  2114 It returns the contents of write buffer as a string,
  2115  and as side effect, STATUS is updated.
  2116 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
  2117 is a unibyte string.  By default it is a multibyte string.
  2118 
  2119 See the documentation of `define-ccl-program' for the detail of CCL program.
  2120 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P)  */)
  2121   (Lisp_Object ccl_prog, Lisp_Object status, Lisp_Object str, Lisp_Object contin, Lisp_Object unibyte_p)
  2122 {
  2123   Lisp_Object val;
  2124   struct ccl_program ccl;
  2125   int i;
  2126   ptrdiff_t outbufsize;
  2127   unsigned char *outbuf, *outp;
  2128   ptrdiff_t str_chars, str_bytes;
  2129 #define CCL_EXECUTE_BUF_SIZE 1024
  2130   int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
  2131   ptrdiff_t consumed_chars, consumed_bytes, produced_chars;
  2132   int buf_magnification;
  2133 
  2134   if (! setup_ccl_program (&ccl, ccl_prog))
  2135     error ("Invalid CCL program");
  2136 
  2137   CHECK_VECTOR (status);
  2138   if (ASIZE (status) != 9)
  2139     error ("Length of vector STATUS is not 9");
  2140   CHECK_STRING (str);
  2141 
  2142   str_chars = SCHARS (str);
  2143   str_bytes = SBYTES (str);
  2144 
  2145   for (i = 0; i < 8; i++)
  2146     {
  2147       if (NILP (AREF (status, i)))
  2148         ASET (status, i, make_fixnum (0));
  2149       intmax_t n;
  2150       if (INTEGERP (AREF (status, i))
  2151           && integer_to_intmax (AREF (status, i), &n)
  2152           && INT_MIN <= n && n <= INT_MAX)
  2153         ccl.reg[i] = n;
  2154     }
  2155   intmax_t ic;
  2156   if (INTEGERP (AREF (status, 8)) && integer_to_intmax (AREF (status, 8), &ic))
  2157     {
  2158       if (ccl.ic < ic && ic < ccl.size)
  2159         ccl.ic = ic;
  2160     }
  2161 
  2162   buf_magnification = ccl.buf_magnification ? ccl.buf_magnification : 1;
  2163   outbufsize = str_bytes;
  2164   if (INT_MULTIPLY_WRAPV (buf_magnification, outbufsize, &outbufsize)
  2165       || INT_ADD_WRAPV (256, outbufsize, &outbufsize))
  2166     memory_full (SIZE_MAX);
  2167   outp = outbuf = xmalloc (outbufsize);
  2168 
  2169   consumed_chars = consumed_bytes = 0;
  2170   produced_chars = 0;
  2171   while (1)
  2172     {
  2173       const unsigned char *p = SDATA (str) + consumed_bytes;
  2174       const unsigned char *endp = SDATA (str) + str_bytes;
  2175       int j = 0;
  2176       int *src, src_size;
  2177 
  2178       if (endp - p == str_chars - consumed_chars)
  2179         while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
  2180           source[j++] = *p++;
  2181       else
  2182         while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
  2183           source[j++] = string_char_advance (&p);
  2184       consumed_chars += j;
  2185       consumed_bytes = p - SDATA (str);
  2186 
  2187       if (consumed_bytes == str_bytes)
  2188         ccl.last_block = NILP (contin);
  2189       src = source;
  2190       src_size = j;
  2191       while (1)
  2192         {
  2193           int max_expansion = NILP (unibyte_p) ? MAX_MULTIBYTE_LENGTH : 1;
  2194           ptrdiff_t offset, shortfall;
  2195           ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
  2196                       Qnil);
  2197           produced_chars += ccl.produced;
  2198           offset = outp - outbuf;
  2199           shortfall = ccl.produced * max_expansion - (outbufsize - offset);
  2200           if (shortfall > 0)
  2201             {
  2202               outbuf = xpalloc (outbuf, &outbufsize, shortfall, -1, 1);
  2203               outp = outbuf + offset;
  2204             }
  2205           if (NILP (unibyte_p))
  2206             {
  2207               for (j = 0; j < ccl.produced; j++)
  2208                 outp += CHAR_STRING (destination[j], outp);
  2209             }
  2210           else
  2211             {
  2212               for (j = 0; j < ccl.produced; j++)
  2213                 *outp++ = destination[j];
  2214             }
  2215           src += ccl.consumed;
  2216           src_size -= ccl.consumed;
  2217           if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
  2218             break;
  2219         }
  2220 
  2221       if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
  2222           || str_chars == consumed_chars)
  2223         break;
  2224     }
  2225 
  2226   if (ccl.status == CCL_STAT_INVALID_CMD)
  2227     error ("Error in CCL program at %dth code", ccl.ic);
  2228   if (ccl.status == CCL_STAT_QUIT)
  2229     error ("CCL program interrupted at %dth code", ccl.ic);
  2230 
  2231   for (i = 0; i < 8; i++)
  2232     ASET (status, i, make_int (ccl.reg[i]));
  2233   ASET (status, 8, make_int (ccl.ic));
  2234 
  2235   val = make_specified_string ((const char *) outbuf, produced_chars,
  2236                                outp - outbuf, NILP (unibyte_p));
  2237   xfree (outbuf);
  2238 
  2239   return val;
  2240 }
  2241 
  2242 DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
  2243        2, 2, 0,
  2244        doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
  2245 CCL-PROG should be a compiled CCL program (vector), or nil.
  2246 If it is nil, just reserve NAME as a CCL program name.
  2247 Return index number of the registered CCL program.  */)
  2248      (Lisp_Object name, Lisp_Object ccl_prog)
  2249 {
  2250   ptrdiff_t len = ASIZE (Vccl_program_table);
  2251   ptrdiff_t idx;
  2252   Lisp_Object resolved;
  2253 
  2254   CHECK_SYMBOL (name);
  2255   resolved = Qnil;
  2256   if (!NILP (ccl_prog))
  2257     {
  2258       CHECK_VECTOR (ccl_prog);
  2259       resolved = resolve_symbol_ccl_program (ccl_prog);
  2260       if (NILP (resolved))
  2261         error ("Error in CCL program");
  2262       if (VECTORP (resolved))
  2263         {
  2264           ccl_prog = resolved;
  2265           resolved = Qt;
  2266         }
  2267       else
  2268         resolved = Qnil;
  2269     }
  2270 
  2271   for (idx = 0; idx < len; idx++)
  2272     {
  2273       Lisp_Object slot;
  2274 
  2275       slot = AREF (Vccl_program_table, idx);
  2276       if (!VECTORP (slot))
  2277         /* This is the first unused slot.  Register NAME here.  */
  2278         break;
  2279 
  2280       if (EQ (name, AREF (slot, 0)))
  2281         {
  2282           /* Update this slot.  */
  2283           ASET (slot, 1, ccl_prog);
  2284           ASET (slot, 2, resolved);
  2285           ASET (slot, 3, Qt);
  2286           return make_fixnum (idx);
  2287         }
  2288     }
  2289 
  2290   if (idx == len)
  2291     /* Extend the table.  */
  2292     Vccl_program_table = larger_vector (Vccl_program_table, 1, -1);
  2293 
  2294   ASET (Vccl_program_table, idx,
  2295         CALLN (Fvector, name, ccl_prog, resolved, Qt));
  2296 
  2297   Fput (name, Qccl_program_idx, make_fixnum (idx));
  2298   return make_fixnum (idx);
  2299 }
  2300 
  2301 /* Register code conversion map.
  2302    A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
  2303    The first element is the start code point.
  2304    The other elements are mapped numbers.
  2305    Symbol t means to map to an original number before mapping.
  2306    Symbol nil means that the corresponding element is empty.
  2307    Symbol lambda means to terminate mapping here.
  2308 */
  2309 
  2310 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
  2311        Sregister_code_conversion_map,
  2312        2, 2, 0,
  2313        doc: /* Register SYMBOL as code conversion map MAP.
  2314 Return index number of the registered map.  */)
  2315   (Lisp_Object symbol, Lisp_Object map)
  2316 {
  2317   ptrdiff_t len;
  2318   ptrdiff_t i;
  2319   Lisp_Object idx;
  2320 
  2321   CHECK_SYMBOL (symbol);
  2322   CHECK_VECTOR (map);
  2323   if (! VECTORP (Vcode_conversion_map_vector))
  2324     error ("Invalid code-conversion-map-vector");
  2325 
  2326   len = ASIZE (Vcode_conversion_map_vector);
  2327 
  2328   for (i = 0; i < len; i++)
  2329     {
  2330       Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
  2331 
  2332       if (!CONSP (slot))
  2333         break;
  2334 
  2335       if (EQ (symbol, XCAR (slot)))
  2336         {
  2337           idx = make_fixnum (i);
  2338           XSETCDR (slot, map);
  2339           Fput (symbol, Qcode_conversion_map, map);
  2340           Fput (symbol, Qcode_conversion_map_id, idx);
  2341           return idx;
  2342         }
  2343     }
  2344 
  2345   if (i == len)
  2346     Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
  2347                                                  1, -1);
  2348 
  2349   idx = make_fixnum (i);
  2350   Fput (symbol, Qcode_conversion_map, map);
  2351   Fput (symbol, Qcode_conversion_map_id, idx);
  2352   ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
  2353   return idx;
  2354 }
  2355 
  2356 
  2357 void
  2358 syms_of_ccl (void)
  2359 {
  2360   staticpro (&Vccl_program_table);
  2361   Vccl_program_table = make_nil_vector (32);
  2362 
  2363   DEFSYM (Qccl, "ccl");
  2364   DEFSYM (Qcclp, "cclp");
  2365 
  2366   /* Symbols of ccl program have this property, a value of the property
  2367      is an index for Vccl_program_table. */
  2368   DEFSYM (Qccl_program_idx, "ccl-program-idx");
  2369 
  2370   /* These symbols are properties which associate with code conversion
  2371      map and their ID respectively.  */
  2372   DEFSYM (Qcode_conversion_map, "code-conversion-map");
  2373   DEFSYM (Qcode_conversion_map_id, "code-conversion-map-id");
  2374 
  2375   DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector,
  2376                doc: /* Vector of code conversion maps.  */);
  2377   Vcode_conversion_map_vector = make_nil_vector (16);
  2378 
  2379   DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist,
  2380                doc: /* Alist of fontname patterns vs corresponding CCL program.
  2381 Each element looks like (REGEXP . CCL-CODE),
  2382  where CCL-CODE is a compiled CCL program.
  2383 When a font whose name matches REGEXP is used for displaying a character,
  2384  CCL-CODE is executed to calculate the code point in the font
  2385  from the charset number and position code(s) of the character which are set
  2386  in CCL registers R0, R1, and R2 before the execution.
  2387 The code point in the font is set in CCL registers R1 and R2
  2388  when the execution terminated.
  2389  If the font is single-byte font, the register R2 is not used.  */);
  2390   Vfont_ccl_encoder_alist = Qnil;
  2391 
  2392   DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector,
  2393     doc: /* Vector containing all translation hash tables ever defined.
  2394 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
  2395 to `define-translation-hash-table'.  The vector is indexed by the table id
  2396 used by CCL.  */);
  2397     Vtranslation_hash_table_vector = Qnil;
  2398 
  2399   defsubr (&Sccl_program_p);
  2400   defsubr (&Sccl_execute);
  2401   defsubr (&Sccl_execute_on_string);
  2402   defsubr (&Sregister_ccl_program);
  2403   defsubr (&Sregister_code_conversion_map);
  2404 }

/* [<][>][^][v][top][bottom][index][help] */