root/lib/str-two-way.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. critical_factorization
  2. two_way_short_needle
  3. two_way_long_needle

     1 /* Byte-wise substring search, using the Two-Way algorithm.
     2    Copyright (C) 2008-2023 Free Software Foundation, Inc.
     3    This file is part of the GNU C Library.
     4    Written by Eric Blake <ebb9@byu.net>, 2008.
     5 
     6    This file is free software: you can redistribute it and/or modify
     7    it under the terms of the GNU Lesser General Public License as
     8    published by the Free Software Foundation; either version 2.1 of the
     9    License, or (at your option) any later version.
    10 
    11    This file is distributed in the hope that it will be useful,
    12    but WITHOUT ANY WARRANTY; without even the implied warranty of
    13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    14    GNU Lesser General Public License for more details.
    15 
    16    You should have received a copy of the GNU Lesser General Public License
    17    along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
    18 
    19 /* Before including this file, you need to include <config.h> and
    20    <string.h>, and define:
    21      RETURN_TYPE             A macro that expands to the return type.
    22      AVAILABLE(h, h_l, j, n_l)
    23                              A macro that returns nonzero if there are
    24                              at least N_L bytes left starting at H[J].
    25                              H is 'unsigned char *', H_L, J, and N_L
    26                              are 'size_t'; H_L is an lvalue.  For
    27                              NUL-terminated searches, H_L can be
    28                              modified each iteration to avoid having
    29                              to compute the end of H up front.
    30 
    31   For case-insensitivity, you may optionally define:
    32      CMP_FUNC(p1, p2, l)     A macro that returns 0 iff the first L
    33                              characters of P1 and P2 are equal.
    34      CANON_ELEMENT(c)        A macro that canonicalizes an element right after
    35                              it has been fetched from one of the two strings.
    36                              The argument is an 'unsigned char'; the result
    37                              must be an 'unsigned char' as well.
    38 
    39   This file undefines the macros documented above, and defines
    40   LONG_NEEDLE_THRESHOLD.
    41 */
    42 
    43 #include <limits.h>
    44 #include <stdint.h>
    45 
    46 /* We use the Two-Way string matching algorithm (also known as
    47    Chrochemore-Perrin), which guarantees linear complexity with
    48    constant space.  Additionally, for long needles, we also use a bad
    49    character shift table similar to the Boyer-Moore algorithm to
    50    achieve improved (potentially sub-linear) performance.
    51 
    52    See https://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260,
    53    https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm,
    54    https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.6641&rep=rep1&type=pdf
    55 */
    56 
    57 /* Point at which computing a bad-byte shift table is likely to be
    58    worthwhile.  Small needles should not compute a table, since it
    59    adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
    60    speedup no greater than a factor of NEEDLE_LEN.  The larger the
    61    needle, the better the potential performance gain.  On the other
    62    hand, on non-POSIX systems with CHAR_BIT larger than eight, the
    63    memory required for the table is prohibitive.  */
    64 #if CHAR_BIT < 10
    65 # define LONG_NEEDLE_THRESHOLD 32U
    66 #else
    67 # define LONG_NEEDLE_THRESHOLD SIZE_MAX
    68 #endif
    69 
    70 #ifndef MAX
    71 # define MAX(a, b) ((a < b) ? (b) : (a))
    72 #endif
    73 
    74 #ifndef CANON_ELEMENT
    75 # define CANON_ELEMENT(c) c
    76 #endif
    77 #ifndef CMP_FUNC
    78 # define CMP_FUNC memcmp
    79 #endif
    80 
    81 /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
    82    Return the index of the first byte in the right half, and set
    83    *PERIOD to the global period of the right half.
    84 
    85    The global period of a string is the smallest index (possibly its
    86    length) at which all remaining bytes in the string are repetitions
    87    of the prefix (the last repetition may be a subset of the prefix).
    88 
    89    When NEEDLE is factored into two halves, a local period is the
    90    length of the smallest word that shares a suffix with the left half
    91    and shares a prefix with the right half.  All factorizations of a
    92    non-empty NEEDLE have a local period of at least 1 and no greater
    93    than NEEDLE_LEN.
    94 
    95    A critical factorization has the property that the local period
    96    equals the global period.  All strings have at least one critical
    97    factorization with the left half smaller than the global period.
    98    And while some strings have more than one critical factorization,
    99    it is provable that with an ordered alphabet, at least one of the
   100    critical factorizations corresponds to a maximal suffix.
   101 
   102    Given an ordered alphabet, a critical factorization can be computed
   103    in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
   104    shorter of two ordered maximal suffixes.  The ordered maximal
   105    suffixes are determined by lexicographic comparison while tracking
   106    periodicity.  */
   107 static size_t
   108 critical_factorization (const unsigned char *needle, size_t needle_len,
   109                         size_t *period)
   110 {
   111   /* Index of last byte of left half, or SIZE_MAX.  */
   112   size_t max_suffix, max_suffix_rev;
   113   size_t j; /* Index into NEEDLE for current candidate suffix.  */
   114   size_t k; /* Offset into current period.  */
   115   size_t p; /* Intermediate period.  */
   116   unsigned char a, b; /* Current comparison bytes.  */
   117 
   118   /* Special case NEEDLE_LEN of 1 or 2 (all callers already filtered
   119      out 0-length needles.  */
   120   if (needle_len < 3)
   121     {
   122       *period = 1;
   123       return needle_len - 1;
   124     }
   125 
   126   /* Invariants:
   127      0 <= j < NEEDLE_LEN - 1
   128      -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
   129      min(max_suffix, max_suffix_rev) < global period of NEEDLE
   130      1 <= p <= global period of NEEDLE
   131      p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
   132      1 <= k <= p
   133   */
   134 
   135   /* Perform lexicographic search.  */
   136   max_suffix = SIZE_MAX;
   137   j = 0;
   138   k = p = 1;
   139   while (j + k < needle_len)
   140     {
   141       a = CANON_ELEMENT (needle[j + k]);
   142       b = CANON_ELEMENT (needle[max_suffix + k]);
   143       if (a < b)
   144         {
   145           /* Suffix is smaller, period is entire prefix so far.  */
   146           j += k;
   147           k = 1;
   148           p = j - max_suffix;
   149         }
   150       else if (a == b)
   151         {
   152           /* Advance through repetition of the current period.  */
   153           if (k != p)
   154             ++k;
   155           else
   156             {
   157               j += p;
   158               k = 1;
   159             }
   160         }
   161       else /* b < a */
   162         {
   163           /* Suffix is larger, start over from current location.  */
   164           max_suffix = j++;
   165           k = p = 1;
   166         }
   167     }
   168   *period = p;
   169 
   170   /* Perform reverse lexicographic search.  */
   171   max_suffix_rev = SIZE_MAX;
   172   j = 0;
   173   k = p = 1;
   174   while (j + k < needle_len)
   175     {
   176       a = CANON_ELEMENT (needle[j + k]);
   177       b = CANON_ELEMENT (needle[max_suffix_rev + k]);
   178       if (b < a)
   179         {
   180           /* Suffix is smaller, period is entire prefix so far.  */
   181           j += k;
   182           k = 1;
   183           p = j - max_suffix_rev;
   184         }
   185       else if (a == b)
   186         {
   187           /* Advance through repetition of the current period.  */
   188           if (k != p)
   189             ++k;
   190           else
   191             {
   192               j += p;
   193               k = 1;
   194             }
   195         }
   196       else /* a < b */
   197         {
   198           /* Suffix is larger, start over from current location.  */
   199           max_suffix_rev = j++;
   200           k = p = 1;
   201         }
   202     }
   203 
   204   /* Choose the shorter suffix.  Return the index of the first byte of
   205      the right half, rather than the last byte of the left half.
   206 
   207      For some examples, 'banana' has two critical factorizations, both
   208      exposed by the two lexicographic extreme suffixes of 'anana' and
   209      'nana', where both suffixes have a period of 2.  On the other
   210      hand, with 'aab' and 'bba', both strings have a single critical
   211      factorization of the last byte, with the suffix having a period
   212      of 1.  While the maximal lexicographic suffix of 'aab' is 'b',
   213      the maximal lexicographic suffix of 'bba' is 'ba', which is not a
   214      critical factorization.  Conversely, the maximal reverse
   215      lexicographic suffix of 'a' works for 'bba', but not 'ab' for
   216      'aab'.  The shorter suffix of the two will always be a critical
   217      factorization.  */
   218   if (max_suffix_rev + 1 < max_suffix + 1)
   219     return max_suffix + 1;
   220   *period = p;
   221   return max_suffix_rev + 1;
   222 }
   223 
   224 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
   225    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
   226    method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
   227    Performance is guaranteed to be linear, with an initialization cost
   228    of 2 * NEEDLE_LEN comparisons.
   229 
   230    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
   231    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
   232    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
   233    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.  */
   234 static RETURN_TYPE _GL_ATTRIBUTE_PURE
   235 two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
   236                       const unsigned char *needle, size_t needle_len)
   237 {
   238   size_t i; /* Index into current byte of NEEDLE.  */
   239   size_t j; /* Index into current window of HAYSTACK.  */
   240   size_t period; /* The period of the right half of needle.  */
   241   size_t suffix; /* The index of the right half of needle.  */
   242 
   243   /* Factor the needle into two halves, such that the left half is
   244      smaller than the global period, and the right half is
   245      periodic (with a period as large as NEEDLE_LEN - suffix).  */
   246   suffix = critical_factorization (needle, needle_len, &period);
   247 
   248   /* Perform the search.  Each iteration compares the right half
   249      first.  */
   250   if (CMP_FUNC (needle, needle + period, suffix) == 0)
   251     {
   252       /* Entire needle is periodic; a mismatch in the left half can
   253          only advance by the period, so use memory to avoid rescanning
   254          known occurrences of the period in the right half.  */
   255       size_t memory = 0;
   256       j = 0;
   257       while (AVAILABLE (haystack, haystack_len, j, needle_len))
   258         {
   259           /* Scan for matches in right half.  */
   260           i = MAX (suffix, memory);
   261           while (i < needle_len && (CANON_ELEMENT (needle[i])
   262                                     == CANON_ELEMENT (haystack[i + j])))
   263             ++i;
   264           if (needle_len <= i)
   265             {
   266               /* Scan for matches in left half.  */
   267               i = suffix - 1;
   268               while (memory < i + 1 && (CANON_ELEMENT (needle[i])
   269                                         == CANON_ELEMENT (haystack[i + j])))
   270                 --i;
   271               if (i + 1 < memory + 1)
   272                 return (RETURN_TYPE) (haystack + j);
   273               /* No match, so remember how many repetitions of period
   274                  on the right half were scanned.  */
   275               j += period;
   276               memory = needle_len - period;
   277             }
   278           else
   279             {
   280               j += i - suffix + 1;
   281               memory = 0;
   282             }
   283         }
   284     }
   285   else
   286     {
   287       /* The two halves of needle are distinct; no extra memory is
   288          required, and any mismatch results in a maximal shift.  */
   289       period = MAX (suffix, needle_len - suffix) + 1;
   290       j = 0;
   291       while (AVAILABLE (haystack, haystack_len, j, needle_len))
   292         {
   293           /* Scan for matches in right half.  */
   294           i = suffix;
   295           while (i < needle_len && (CANON_ELEMENT (needle[i])
   296                                     == CANON_ELEMENT (haystack[i + j])))
   297             ++i;
   298           if (needle_len <= i)
   299             {
   300               /* Scan for matches in left half.  */
   301               i = suffix - 1;
   302               while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
   303                                        == CANON_ELEMENT (haystack[i + j])))
   304                 --i;
   305               if (i == SIZE_MAX)
   306                 return (RETURN_TYPE) (haystack + j);
   307               j += period;
   308             }
   309           else
   310             j += i - suffix + 1;
   311         }
   312     }
   313   return NULL;
   314 }
   315 
   316 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
   317    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
   318    method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
   319    Performance is guaranteed to be linear, with an initialization cost
   320    of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
   321 
   322    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
   323    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
   324    and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
   325    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
   326    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
   327    sublinear performance is not possible.  */
   328 static RETURN_TYPE _GL_ATTRIBUTE_PURE
   329 two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
   330                      const unsigned char *needle, size_t needle_len)
   331 {
   332   size_t i; /* Index into current byte of NEEDLE.  */
   333   size_t j; /* Index into current window of HAYSTACK.  */
   334   size_t period; /* The period of the right half of needle.  */
   335   size_t suffix; /* The index of the right half of needle.  */
   336   size_t shift_table[1U << CHAR_BIT]; /* See below.  */
   337 
   338   /* Factor the needle into two halves, such that the left half is
   339      smaller than the global period, and the right half is
   340      periodic (with a period as large as NEEDLE_LEN - suffix).  */
   341   suffix = critical_factorization (needle, needle_len, &period);
   342 
   343   /* Populate shift_table.  For each possible byte value c,
   344      shift_table[c] is the distance from the last occurrence of c to
   345      the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
   346      shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
   347   for (i = 0; i < 1U << CHAR_BIT; i++)
   348     shift_table[i] = needle_len;
   349   for (i = 0; i < needle_len; i++)
   350     shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
   351 
   352   /* Perform the search.  Each iteration compares the right half
   353      first.  */
   354   if (CMP_FUNC (needle, needle + period, suffix) == 0)
   355     {
   356       /* Entire needle is periodic; a mismatch in the left half can
   357          only advance by the period, so use memory to avoid rescanning
   358          known occurrences of the period in the right half.  */
   359       size_t memory = 0;
   360       size_t shift;
   361       j = 0;
   362       while (AVAILABLE (haystack, haystack_len, j, needle_len))
   363         {
   364           /* Check the last byte first; if it does not match, then
   365              shift to the next possible match location.  */
   366           shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
   367           if (0 < shift)
   368             {
   369               if (memory && shift < period)
   370                 {
   371                   /* Since needle is periodic, but the last period has
   372                      a byte out of place, there can be no match until
   373                      after the mismatch.  */
   374                   shift = needle_len - period;
   375                 }
   376               memory = 0;
   377               j += shift;
   378               continue;
   379             }
   380           /* Scan for matches in right half.  The last byte has
   381              already been matched, by virtue of the shift table.  */
   382           i = MAX (suffix, memory);
   383           while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
   384                                         == CANON_ELEMENT (haystack[i + j])))
   385             ++i;
   386           if (needle_len - 1 <= i)
   387             {
   388               /* Scan for matches in left half.  */
   389               i = suffix - 1;
   390               while (memory < i + 1 && (CANON_ELEMENT (needle[i])
   391                                         == CANON_ELEMENT (haystack[i + j])))
   392                 --i;
   393               if (i + 1 < memory + 1)
   394                 return (RETURN_TYPE) (haystack + j);
   395               /* No match, so remember how many repetitions of period
   396                  on the right half were scanned.  */
   397               j += period;
   398               memory = needle_len - period;
   399             }
   400           else
   401             {
   402               j += i - suffix + 1;
   403               memory = 0;
   404             }
   405         }
   406     }
   407   else
   408     {
   409       /* The two halves of needle are distinct; no extra memory is
   410          required, and any mismatch results in a maximal shift.  */
   411       size_t shift;
   412       period = MAX (suffix, needle_len - suffix) + 1;
   413       j = 0;
   414       while (AVAILABLE (haystack, haystack_len, j, needle_len))
   415         {
   416           /* Check the last byte first; if it does not match, then
   417              shift to the next possible match location.  */
   418           shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
   419           if (0 < shift)
   420             {
   421               j += shift;
   422               continue;
   423             }
   424           /* Scan for matches in right half.  The last byte has
   425              already been matched, by virtue of the shift table.  */
   426           i = suffix;
   427           while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
   428                                         == CANON_ELEMENT (haystack[i + j])))
   429             ++i;
   430           if (needle_len - 1 <= i)
   431             {
   432               /* Scan for matches in left half.  */
   433               i = suffix - 1;
   434               while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
   435                                        == CANON_ELEMENT (haystack[i + j])))
   436                 --i;
   437               if (i == SIZE_MAX)
   438                 return (RETURN_TYPE) (haystack + j);
   439               j += period;
   440             }
   441           else
   442             j += i - suffix + 1;
   443         }
   444     }
   445   return NULL;
   446 }
   447 
   448 #undef AVAILABLE
   449 #undef CANON_ELEMENT
   450 #undef CMP_FUNC
   451 #undef MAX
   452 #undef RETURN_TYPE

/* [<][>][^][v][top][bottom][index][help] */