root/src/ccl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ccl_debug_hook
  2. GET_TRANSLATION_TABLE
  3. ccl_driver
  4. resolve_symbol_ccl_program
  5. ccl_get_compiled_code
  6. setup_ccl_program
  7. DEFUN
  8. syms_of_ccl

     1 /* CCL (Code Conversion Language) interpreter.
     2    Copyright (C) 2001-2023 Free Software Foundation, Inc.
     3    Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
     4      2005, 2006, 2007, 2008, 2009, 2010, 2011
     5      National Institute of Advanced Industrial Science and Technology (AIST)
     6      Registration Number H14PRO021
     7    Copyright (C) 2003
     8      National Institute of Advanced Industrial Science and Technology (AIST)
     9      Registration Number H13PRO009
    10 
    11 This file is part of GNU Emacs.
    12 
    13 GNU Emacs is free software: you can redistribute it and/or modify
    14 it under the terms of the GNU General Public License as published by
    15 the Free Software Foundation, either version 3 of the License, or (at
    16 your option) any later version.
    17 
    18 GNU Emacs is distributed in the hope that it will be useful,
    19 but WITHOUT ANY WARRANTY; without even the implied warranty of
    20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    21 GNU General Public License for more details.
    22 
    23 You should have received a copy of the GNU General Public License
    24 along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.  */
    25 
    26 #include <config.h>
    27 
    28 #include <stdio.h>
    29 #include <limits.h>
    30 
    31 #include "lisp.h"
    32 #include "character.h"
    33 #include "charset.h"
    34 #include "ccl.h"
    35 #include "coding.h"
    36 #include "keyboard.h"
    37 
    38 /* Avoid GCC 12 bug <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105784>.  */
    39 #if GNUC_PREREQ (12, 0, 0)
    40 # pragma GCC diagnostic ignored "-Wanalyzer-use-of-uninitialized-value"
    41 #endif
    42 
    43 /* Table of registered CCL programs.  Each element is a vector of
    44    NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
    45    name of the program, CCL_PROG (vector) is the compiled code of the
    46    program, RESOLVEDP (t or nil) is the flag to tell if symbols in
    47    CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
    48    or nil) is the flat to tell if the CCL program is updated after it
    49    was once used.  */
    50 static Lisp_Object Vccl_program_table;
    51 
    52 /* Return a hash table of id number ID.  */
    53 #define GET_HASH_TABLE(id) \
    54   (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
    55 
    56 /* CCL (Code Conversion Language) is a simple language which has
    57    operations on one input buffer, one output buffer, and 7 registers.
    58    The syntax of CCL is described in `ccl.el'.  Emacs Lisp function
    59    `ccl-compile' compiles a CCL program and produces a CCL code which
    60    is a vector of integers.  The structure of this vector is as
    61    follows: The 1st element: buffer-magnification, a factor for the
    62    size of output buffer compared with the size of input buffer.  The
    63    2nd element: address of CCL code to be executed when encountered
    64    with end of input stream.  The 3rd and the remaining elements: CCL
    65    codes.  */
    66 
    67 /* Header of CCL compiled code */
    68 #define CCL_HEADER_BUF_MAG      0
    69 #define CCL_HEADER_EOF          1
    70 #define CCL_HEADER_MAIN         2
    71 
    72 /* CCL code is a sequence of 28-bit integers.  Each contains a CCL
    73    command and/or arguments in the following format:
    74 
    75         |----------------- integer (28-bit) ------------------|
    76         |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
    77         |--constant argument--|-register-|-register-|-command-|
    78            ccccccccccccccccc      RRR        rrr       XXXXX
    79   or
    80         |------- relative address -------|-register-|-command-|
    81                cccccccccccccccccccc          rrr       XXXXX
    82   or
    83         |------------- constant or other args ----------------|
    84                      cccccccccccccccccccccccccccc
    85 
    86    where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
    87    constant value or a relative/absolute jump address, `RRR'
    88    and `rrr' are CCL register number, `XXXXX' is one of the following
    89    CCL commands.  */
    90 
    91 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
    92 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
    93 
    94 /* CCL commands
    95 
    96    Each comment fields shows one or more lines for command syntax and
    97    the following lines for semantics of the command.  In semantics, IC
    98    stands for Instruction Counter.  */
    99 
   100 #define CCL_SetRegister         0x00 /* Set register a register value:
   101                                         1:00000000000000000RRRrrrXXXXX
   102                                         ------------------------------
   103                                         reg[rrr] = reg[RRR];
   104                                         */
   105 
   106 #define CCL_SetShortConst       0x01 /* Set register a short constant value:
   107                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   108                                         ------------------------------
   109                                         reg[rrr] = CCCCCCCCCCCCCCCCCCC;
   110                                         */
   111 
   112 #define CCL_SetConst            0x02 /* Set register a constant value:
   113                                         1:00000000000000000000rrrXXXXX
   114                                         2:CONSTANT
   115                                         ------------------------------
   116                                         reg[rrr] = CONSTANT;
   117                                         IC++;
   118                                         */
   119 
   120 #define CCL_SetArray            0x03 /* Set register an element of array:
   121                                         1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
   122                                         2:ELEMENT[0]
   123                                         3:ELEMENT[1]
   124                                         ...
   125                                         ------------------------------
   126                                         if (0 <= reg[RRR] < CC..C)
   127                                           reg[rrr] = ELEMENT[reg[RRR]];
   128                                         IC += CC..C;
   129                                         */
   130 
   131 #define CCL_Jump                0x04 /* Jump:
   132                                         1:A--D--D--R--E--S--S-000XXXXX
   133                                         ------------------------------
   134                                         IC += ADDRESS;
   135                                         */
   136 
   137 /* Note: If CC..C is greater than 0, the second code is omitted.  */
   138 
   139 #define CCL_JumpCond            0x05 /* Jump conditional:
   140                                         1:A--D--D--R--E--S--S-rrrXXXXX
   141                                         ------------------------------
   142                                         if (!reg[rrr])
   143                                           IC += ADDRESS;
   144                                         */
   145 
   146 
   147 #define CCL_WriteRegisterJump   0x06 /* Write register and jump:
   148                                         1:A--D--D--R--E--S--S-rrrXXXXX
   149                                         ------------------------------
   150                                         write (reg[rrr]);
   151                                         IC += ADDRESS;
   152                                         */
   153 
   154 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
   155                                         1:A--D--D--R--E--S--S-rrrXXXXX
   156                                         2:A--D--D--R--E--S--S-rrrYYYYY
   157                                         -----------------------------
   158                                         write (reg[rrr]);
   159                                         IC++;
   160                                         read (reg[rrr]);
   161                                         IC += ADDRESS;
   162                                         */
   163 /* Note: If read is suspended, the resumed execution starts from the
   164    second code (YYYYY == CCL_ReadJump).  */
   165 
   166 #define CCL_WriteConstJump      0x08 /* Write constant and jump:
   167                                         1:A--D--D--R--E--S--S-000XXXXX
   168                                         2:CONST
   169                                         ------------------------------
   170                                         write (CONST);
   171                                         IC += ADDRESS;
   172                                         */
   173 
   174 #define CCL_WriteConstReadJump  0x09 /* Write constant, read, and jump:
   175                                         1:A--D--D--R--E--S--S-rrrXXXXX
   176                                         2:CONST
   177                                         3:A--D--D--R--E--S--S-rrrYYYYY
   178                                         -----------------------------
   179                                         write (CONST);
   180                                         IC += 2;
   181                                         read (reg[rrr]);
   182                                         IC += ADDRESS;
   183                                         */
   184 /* Note: If read is suspended, the resumed execution starts from the
   185    second code (YYYYY == CCL_ReadJump).  */
   186 
   187 #define CCL_WriteStringJump     0x0A /* Write string and jump:
   188                                         1:A--D--D--R--E--S--S-000XXXXX
   189                                         2:LENGTH
   190                                         3:000MSTRIN[0]STRIN[1]STRIN[2]
   191                                         ...
   192                                         ------------------------------
   193                                         if (M)
   194                                           write_multibyte_string (STRING, LENGTH);
   195                                         else
   196                                           write_string (STRING, LENGTH);
   197                                         IC += ADDRESS;
   198                                         */
   199 
   200 #define CCL_WriteArrayReadJump  0x0B /* Write an array element, read, and jump:
   201                                         1:A--D--D--R--E--S--S-rrrXXXXX
   202                                         2:LENGTH
   203                                         3:ELEMENT[0]
   204                                         4:ELEMENT[1]
   205                                         ...
   206                                         N:A--D--D--R--E--S--S-rrrYYYYY
   207                                         ------------------------------
   208                                         if (0 <= reg[rrr] < LENGTH)
   209                                           write (ELEMENT[reg[rrr]]);
   210                                         IC += LENGTH + 2; (... pointing at N+1)
   211                                         read (reg[rrr]);
   212                                         IC += ADDRESS;
   213                                         */
   214 /* Note: If read is suspended, the resumed execution starts from the
   215    Nth code (YYYYY == CCL_ReadJump).  */
   216 
   217 #define CCL_ReadJump            0x0C /* Read and jump:
   218                                         1:A--D--D--R--E--S--S-rrrYYYYY
   219                                         -----------------------------
   220                                         read (reg[rrr]);
   221                                         IC += ADDRESS;
   222                                         */
   223 
   224 #define CCL_Branch              0x0D /* Jump by branch table:
   225                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   226                                         2:A--D--D--R--E-S-S[0]000XXXXX
   227                                         3:A--D--D--R--E-S-S[1]000XXXXX
   228                                         ...
   229                                         ------------------------------
   230                                         if (0 <= reg[rrr] < CC..C)
   231                                           IC += ADDRESS[reg[rrr]];
   232                                         else
   233                                           IC += ADDRESS[CC..C];
   234                                         */
   235 
   236 #define CCL_ReadRegister        0x0E /* Read bytes into registers:
   237                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   238                                         2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   239                                         ...
   240                                         ------------------------------
   241                                         while (CCC--)
   242                                           read (reg[rrr]);
   243                                         */
   244 
   245 #define CCL_WriteExprConst      0x0F  /* write result of expression:
   246                                         1:00000OPERATION000RRR000XXXXX
   247                                         2:CONSTANT
   248                                         ------------------------------
   249                                         write (reg[RRR] OPERATION CONSTANT);
   250                                         IC++;
   251                                         */
   252 
   253 /* Note: If the Nth read is suspended, the resumed execution starts
   254    from the Nth code.  */
   255 
   256 #define CCL_ReadBranch          0x10 /* Read one byte into a register,
   257                                         and jump by branch table:
   258                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   259                                         2:A--D--D--R--E-S-S[0]000XXXXX
   260                                         3:A--D--D--R--E-S-S[1]000XXXXX
   261                                         ...
   262                                         ------------------------------
   263                                         read (read[rrr]);
   264                                         if (0 <= reg[rrr] < CC..C)
   265                                           IC += ADDRESS[reg[rrr]];
   266                                         else
   267                                           IC += ADDRESS[CC..C];
   268                                         */
   269 
   270 #define CCL_WriteRegister       0x11 /* Write registers:
   271                                         1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
   272                                         2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
   273                                         ...
   274                                         ------------------------------
   275                                         while (CCC--)
   276                                           write (reg[rrr]);
   277                                         ...
   278                                         */
   279 
   280 /* Note: If the Nth write is suspended, the resumed execution
   281    starts from the Nth code.  */
   282 
   283 #define CCL_WriteExprRegister   0x12 /* Write result of expression
   284                                         1:00000OPERATIONRrrRRR000XXXXX
   285                                         ------------------------------
   286                                         write (reg[RRR] OPERATION reg[Rrr]);
   287                                         */
   288 
   289 #define CCL_Call                0x13 /* Call the CCL program whose ID is
   290                                         CC..C or cc..c.
   291                                         1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
   292                                         [2:00000000cccccccccccccccccccc]
   293                                         ------------------------------
   294                                         if (FFF)
   295                                           call (cc..c)
   296                                           IC++;
   297                                         else
   298                                           call (CC..C)
   299                                         */
   300 
   301 #define CCL_WriteConstString    0x14 /* Write a constant or a string:
   302                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   303                                         [2:000MSTRIN[0]STRIN[1]STRIN[2]]
   304                                         [...]
   305                                         -----------------------------
   306                                         if (!rrr)
   307                                           write (CC..C)
   308                                         else
   309                                           if (M)
   310                                             write_multibyte_string (STRING, CC..C);
   311                                           else
   312                                             write_string (STRING, CC..C);
   313                                           IC += (CC..C + 2) / 3;
   314                                         */
   315 
   316 #define CCL_WriteArray          0x15 /* Write an element of array:
   317                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
   318                                         2:ELEMENT[0]
   319                                         3:ELEMENT[1]
   320                                         ...
   321                                         ------------------------------
   322                                         if (0 <= reg[rrr] < CC..C)
   323                                           write (ELEMENT[reg[rrr]]);
   324                                         IC += CC..C;
   325                                         */
   326 
   327 #define CCL_End                 0x16 /* Terminate:
   328                                         1:00000000000000000000000XXXXX
   329                                         ------------------------------
   330                                         terminate ();
   331                                         */
   332 
   333 /* The following two codes execute an assignment arithmetic/logical
   334    operation.  The form of the operation is like REG OP= OPERAND.  */
   335 
   336 #define CCL_ExprSelfConst       0x17 /* REG OP= constant:
   337                                         1:00000OPERATION000000rrrXXXXX
   338                                         2:CONSTANT
   339                                         ------------------------------
   340                                         reg[rrr] OPERATION= CONSTANT;
   341                                         */
   342 
   343 #define CCL_ExprSelfReg         0x18 /* REG1 OP= REG2:
   344                                         1:00000OPERATION000RRRrrrXXXXX
   345                                         ------------------------------
   346                                         reg[rrr] OPERATION= reg[RRR];
   347                                         */
   348 
   349 /* The following codes execute an arithmetic/logical operation.  The
   350    form of the operation is like REG_X = REG_Y OP OPERAND2.  */
   351 
   352 #define CCL_SetExprConst        0x19 /* REG_X = REG_Y OP constant:
   353                                         1:00000OPERATION000RRRrrrXXXXX
   354                                         2:CONSTANT
   355                                         ------------------------------
   356                                         reg[rrr] = reg[RRR] OPERATION CONSTANT;
   357                                         IC++;
   358                                         */
   359 
   360 #define CCL_SetExprReg          0x1A /* REG1 = REG2 OP REG3:
   361                                         1:00000OPERATIONRrrRRRrrrXXXXX
   362                                         ------------------------------
   363                                         reg[rrr] = reg[RRR] OPERATION reg[Rrr];
   364                                         */
   365 
   366 #define CCL_JumpCondExprConst   0x1B /* Jump conditional according to
   367                                         an operation on constant:
   368                                         1:A--D--D--R--E--S--S-rrrXXXXX
   369                                         2:OPERATION
   370                                         3:CONSTANT
   371                                         -----------------------------
   372                                         reg[7] = reg[rrr] OPERATION CONSTANT;
   373                                         if (!(reg[7]))
   374                                           IC += ADDRESS;
   375                                         else
   376                                           IC += 2
   377                                         */
   378 
   379 #define CCL_JumpCondExprReg     0x1C /* Jump conditional according to
   380                                         an operation on register:
   381                                         1:A--D--D--R--E--S--S-rrrXXXXX
   382                                         2:OPERATION
   383                                         3:RRR
   384                                         -----------------------------
   385                                         reg[7] = reg[rrr] OPERATION reg[RRR];
   386                                         if (!reg[7])
   387                                           IC += ADDRESS;
   388                                         else
   389                                           IC += 2;
   390                                         */
   391 
   392 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
   393                                           to an operation on constant:
   394                                         1:A--D--D--R--E--S--S-rrrXXXXX
   395                                         2:OPERATION
   396                                         3:CONSTANT
   397                                         -----------------------------
   398                                         read (reg[rrr]);
   399                                         reg[7] = reg[rrr] OPERATION CONSTANT;
   400                                         if (!reg[7])
   401                                           IC += ADDRESS;
   402                                         else
   403                                           IC += 2;
   404                                         */
   405 
   406 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
   407                                         to an operation on register:
   408                                         1:A--D--D--R--E--S--S-rrrXXXXX
   409                                         2:OPERATION
   410                                         3:RRR
   411                                         -----------------------------
   412                                         read (reg[rrr]);
   413                                         reg[7] = reg[rrr] OPERATION reg[RRR];
   414                                         if (!reg[7])
   415                                           IC += ADDRESS;
   416                                         else
   417                                           IC += 2;
   418                                         */
   419 
   420 #define CCL_Extension           0x1F /* Extended CCL code
   421                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX
   422                                         2:ARGUMENT
   423                                         3:...
   424                                         ------------------------------
   425                                         extended_command (rrr,RRR,Rrr,ARGS)
   426                                       */
   427 
   428 /*
   429    Here after, Extended CCL Instructions.
   430    Bit length of extended command is 14.
   431    Therefore, the instruction code range is 0..16384(0x3fff).
   432  */
   433 
   434 /* Read a multibyte character.
   435    A code point is stored into reg[rrr].  A charset ID is stored into
   436    reg[RRR].  */
   437 
   438 #define CCL_ReadMultibyteChar2  0x00 /* Read Multibyte Character
   439                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   440 
   441 /* Write a multibyte character.
   442    Write a character whose code point is reg[rrr] and the charset ID
   443    is reg[RRR].  */
   444 
   445 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
   446                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   447 
   448 /* Translate a character whose code point is reg[rrr] and the charset
   449    ID is reg[RRR] by a translation table whose ID is reg[Rrr].
   450 
   451    A translated character is set in reg[rrr] (code point) and reg[RRR]
   452    (charset ID).  */
   453 
   454 #define CCL_TranslateCharacter  0x02 /* Translate a multibyte character
   455                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
   456 
   457 /* Translate a character whose code point is reg[rrr] and the charset
   458    ID is reg[RRR] by a translation table whose ID is ARGUMENT.
   459 
   460    A translated character is set in reg[rrr] (code point) and reg[RRR]
   461    (charset ID).  */
   462 
   463 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
   464                                                1:ExtendedCOMMNDRrrRRRrrrXXXXX
   465                                                2:ARGUMENT(Translation Table ID)
   466                                             */
   467 
   468 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
   469    reg[RRR]) MAP until some value is found.
   470 
   471    Each MAP is a Lisp vector whose element is number, nil, t, or
   472    lambda.
   473    If the element is nil, ignore the map and proceed to the next map.
   474    If the element is t or lambda, finish without changing reg[rrr].
   475    If the element is a number, set reg[rrr] to the number and finish.
   476 
   477    Detail of the map structure is described in the comment for
   478    CCL_MapMultiple below.  */
   479 
   480 #define CCL_IterateMultipleMap  0x10 /* Iterate multiple maps
   481                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
   482                                         2:NUMBER of MAPs
   483                                         3:MAP-ID1
   484                                         4:MAP-ID2
   485                                         ...
   486                                      */
   487 
   488 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
   489    reg[RRR]) map.
   490 
   491    MAPs are supplied in the succeeding CCL codes as follows:
   492 
   493    When CCL program gives this nested structure of map to this command:
   494         ((MAP-ID11
   495           MAP-ID12
   496           (MAP-ID121 MAP-ID122 MAP-ID123)
   497           MAP-ID13)
   498          (MAP-ID21
   499           (MAP-ID211 (MAP-ID2111) MAP-ID212)
   500           MAP-ID22)),
   501    the compiled CCL codes has this sequence:
   502         CCL_MapMultiple (CCL code of this command)
   503         16 (total number of MAPs and SEPARATORs)
   504         -7 (1st SEPARATOR)
   505         MAP-ID11
   506         MAP-ID12
   507         -3 (2nd SEPARATOR)
   508         MAP-ID121
   509         MAP-ID122
   510         MAP-ID123
   511         MAP-ID13
   512         -7 (3rd SEPARATOR)
   513         MAP-ID21
   514         -4 (4th SEPARATOR)
   515         MAP-ID211
   516         -1 (5th SEPARATOR)
   517         MAP_ID2111
   518         MAP-ID212
   519         MAP-ID22
   520 
   521    A value of each SEPARATOR follows this rule:
   522         MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
   523         SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
   524 
   525    (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
   526 
   527    When some map fails to map (i.e. it doesn't have a value for
   528    reg[rrr]), the mapping is treated as identity.
   529 
   530    The mapping is iterated for all maps in each map set (set of maps
   531    separated by SEPARATOR) except in the case that lambda is
   532    encountered.  More precisely, the mapping proceeds as below:
   533 
   534    At first, VAL0 is set to reg[rrr], and it is translated by the
   535    first map to VAL1.  Then, VAL1 is translated by the next map to
   536    VAL2.  This mapping is iterated until the last map is used.  The
   537    result of the mapping is the last value of VAL?.  When the mapping
   538    process reached to the end of the map set, it moves to the next
   539    map set.  If the next does not exit, the mapping process terminates,
   540    and regard the last value as a result.
   541 
   542    But, when VALm is mapped to VALn and VALn is not a number, the
   543    mapping proceed as below:
   544 
   545    If VALn is nil, the last map is ignored and the mapping of VALm
   546    proceed to the next map.
   547 
   548    In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
   549    proceed to the next map.
   550 
   551    If VALn is lambda, move to the next map set like reaching to the
   552    end of the current map set.
   553 
   554    If VALn is a symbol, call the CCL program referred by it.
   555    Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
   556    Such special values are regarded as nil, t, and lambda respectively.
   557 
   558    Each map is a Lisp vector of the following format (a) or (b):
   559         (a)......[STARTPOINT VAL1 VAL2 ...]
   560         (b)......[t VAL STARTPOINT ENDPOINT],
   561    where
   562         STARTPOINT is an offset to be used for indexing a map,
   563         ENDPOINT is a maximum index number of a map,
   564         VAL and VALn is a number, nil, t, or lambda.
   565 
   566    Valid index range of a map of type (a) is:
   567         STARTPOINT <= index < STARTPOINT + map_size - 1
   568    Valid index range of a map of type (b) is:
   569         STARTPOINT <= index < ENDPOINT  */
   570 
   571 #define CCL_MapMultiple 0x11    /* Mapping by multiple code conversion maps
   572                                          1:ExtendedCOMMNDXXXRRRrrrXXXXX
   573                                          2:N-2
   574                                          3:SEPARATOR_1 (< 0)
   575                                          4:MAP-ID_1
   576                                          5:MAP-ID_2
   577                                          ...
   578                                          M:SEPARATOR_x (< 0)
   579                                          M+1:MAP-ID_y
   580                                          ...
   581                                          N:SEPARATOR_z (< 0)
   582                                       */
   583 
   584 #define MAX_MAP_SET_LEVEL 30
   585 
   586 typedef struct
   587 {
   588   int rest_length;
   589   int orig_val;
   590 } tr_stack;
   591 
   592 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
   593 static tr_stack *mapping_stack_pointer;
   594 
   595 /* If this variable is non-zero, it indicates the stack_idx
   596    of immediately called by CCL_MapMultiple. */
   597 static int stack_idx_of_map_multiple;
   598 
   599 #define PUSH_MAPPING_STACK(restlen, orig)               \
   600 do                                                      \
   601   {                                                     \
   602     mapping_stack_pointer->rest_length = (restlen);     \
   603     mapping_stack_pointer->orig_val = (orig);           \
   604     mapping_stack_pointer++;                            \
   605   }                                                     \
   606 while (0)
   607 
   608 /* Work around GCC bug 109579
   609    https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109579
   610    which causes GCC to mistakenly complain about
   611    popping the mapping stack.  */
   612 #if GNUC_PREREQ (13, 0, 0)
   613 # pragma GCC diagnostic ignored "-Wanalyzer-out-of-bounds"
   614 #endif
   615 
   616 #define POP_MAPPING_STACK(restlen, orig)                \
   617 do                                                      \
   618   {                                                     \
   619     mapping_stack_pointer--;                            \
   620     (restlen) = mapping_stack_pointer->rest_length;     \
   621     (orig) = mapping_stack_pointer->orig_val;           \
   622   }                                                     \
   623 while (0)
   624 
   625 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic)            \
   626 do                                                              \
   627   {                                                             \
   628     struct ccl_program called_ccl;                              \
   629     if (stack_idx >= 256                                        \
   630         || ! setup_ccl_program (&called_ccl, (symbol)))         \
   631       {                                                         \
   632         if (stack_idx > 0)                                      \
   633           {                                                     \
   634             ccl_prog = ccl_prog_stack_struct[0].ccl_prog;       \
   635             ic = ccl_prog_stack_struct[0].ic;                   \
   636             eof_ic = ccl_prog_stack_struct[0].eof_ic;           \
   637           }                                                     \
   638         CCL_INVALID_CMD;                                        \
   639       }                                                         \
   640     ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;       \
   641     ccl_prog_stack_struct[stack_idx].ic = (ret_ic);             \
   642     ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;           \
   643     stack_idx++;                                                \
   644     ccl_prog = called_ccl.prog;                                 \
   645     ic = CCL_HEADER_MAIN;                                       \
   646     eof_ic = XFIXNAT (ccl_prog[CCL_HEADER_EOF]);                \
   647     goto ccl_repeat;                                            \
   648   }                                                             \
   649 while (0)
   650 
   651 #define CCL_MapSingle           0x12 /* Map by single code conversion map
   652                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
   653                                         2:MAP-ID
   654                                         ------------------------------
   655                                         Map reg[rrr] by MAP-ID.
   656                                         If some valid mapping is found,
   657                                           set reg[rrr] to the result,
   658                                         else
   659                                           set reg[RRR] to -1.
   660                                      */
   661 
   662 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
   663                                       integer key.  Afterwards R7 set
   664                                       to 1 if lookup succeeded.
   665                                       1:ExtendedCOMMNDRrrRRRXXXXXXXX
   666                                       2:ARGUMENT(Hash table ID) */
   667 
   668 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
   669                                        character key.  Afterwards R7 set
   670                                        to 1 if lookup succeeded.
   671                                        1:ExtendedCOMMNDRrrRRRrrrXXXXX
   672                                        2:ARGUMENT(Hash table ID) */
   673 
   674 /* CCL arithmetic/logical operators. */
   675 #define CCL_PLUS        0x00    /* X = Y + Z */
   676 #define CCL_MINUS       0x01    /* X = Y - Z */
   677 #define CCL_MUL         0x02    /* X = Y * Z */
   678 #define CCL_DIV         0x03    /* X = Y / Z */
   679 #define CCL_MOD         0x04    /* X = Y % Z */
   680 #define CCL_AND         0x05    /* X = Y & Z */
   681 #define CCL_OR          0x06    /* X = Y | Z */
   682 #define CCL_XOR         0x07    /* X = Y ^ Z */
   683 #define CCL_LSH         0x08    /* X = Y << Z */
   684 #define CCL_RSH         0x09    /* X = Y >> Z */
   685 #define CCL_LSH8        0x0A    /* X = (Y << 8) | Z */
   686 #define CCL_RSH8        0x0B    /* X = Y >> 8, r[7] = Y & 0xFF  */
   687 #define CCL_DIVMOD      0x0C    /* X = Y / Z, r[7] = Y % Z */
   688 #define CCL_LS          0x10    /* X = (X < Y) */
   689 #define CCL_GT          0x11    /* X = (X > Y) */
   690 #define CCL_EQ          0x12    /* X = (X == Y) */
   691 #define CCL_LE          0x13    /* X = (X <= Y) */
   692 #define CCL_GE          0x14    /* X = (X >= Y) */
   693 #define CCL_NE          0x15    /* X = (X != Y) */
   694 
   695 #define CCL_DECODE_SJIS 0x16    /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
   696                                    r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
   697 #define CCL_ENCODE_SJIS 0x17    /* X = HIGHER_BYTE (SJIS (Y, Z))
   698                                    r[7] = LOWER_BYTE (SJIS (Y, Z) */
   699 
   700 /* Terminate CCL program successfully.  */
   701 #define CCL_SUCCESS                     \
   702 do                                      \
   703   {                                     \
   704     ccl->status = CCL_STAT_SUCCESS;     \
   705     goto ccl_finish;                    \
   706   }                                     \
   707 while (0)
   708 
   709 /* Suspend CCL program because of reading from empty input buffer or
   710    writing to full output buffer.  When this program is resumed, the
   711    same I/O command is executed.  */
   712 #define CCL_SUSPEND(stat)       \
   713 do                              \
   714   {                             \
   715     ic--;                       \
   716     ccl->status = stat;         \
   717     goto ccl_finish;            \
   718   }                             \
   719 while (0)
   720 
   721 /* Terminate CCL program because of invalid command.  Should not occur
   722    in the normal case.  */
   723 #ifndef CCL_DEBUG
   724 
   725 #define CCL_INVALID_CMD                 \
   726 do                                      \
   727   {                                     \
   728     ccl->status = CCL_STAT_INVALID_CMD; \
   729     goto ccl_error_handler;             \
   730   }                                     \
   731 while (0)
   732 
   733 #else
   734 
   735 #define CCL_INVALID_CMD                 \
   736 do                                      \
   737   {                                     \
   738     ccl_debug_hook (this_ic);           \
   739     ccl->status = CCL_STAT_INVALID_CMD; \
   740     goto ccl_error_handler;             \
   741   }                                     \
   742 while (0)
   743 
   744 #endif
   745 
   746 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
   747    <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>.  */
   748 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
   749 
   750 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi)                \
   751   do                                                            \
   752     {                                                           \
   753       EMACS_INT prog_word = XFIXNUM ((ccl_prog)[ic]);           \
   754       if (! ASCENDING_ORDER (lo, prog_word, hi))                \
   755         CCL_INVALID_CMD;                                        \
   756       (var) = prog_word;                                        \
   757     }                                                           \
   758   while (0)
   759 
   760 #define GET_CCL_CODE(code, ccl_prog, ic)                        \
   761   GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
   762 
   763 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
   764 
   765 /* Encode one character CH to multibyte form and write to the current
   766    output buffer.  If CH is less than 256, CH is written as is.  */
   767 #define CCL_WRITE_CHAR(ch)                      \
   768   do {                                          \
   769     if (! dst)                                  \
   770       CCL_INVALID_CMD;                          \
   771     else if (dst < dst_end)                     \
   772       *dst++ = (ch);                            \
   773     else                                        \
   774       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);    \
   775   } while (0)
   776 
   777 /* Write a string at ccl_prog[IC] of length LEN to the current output
   778    buffer.  */
   779 #define CCL_WRITE_STRING(len)                                   \
   780   do {                                                          \
   781     int ccli;                                                   \
   782     if (!dst)                                                   \
   783       CCL_INVALID_CMD;                                          \
   784     else if (dst + len <= dst_end)                              \
   785       {                                                         \
   786         if (XFIXNAT (ccl_prog[ic]) & 0x1000000)         \
   787           for (ccli = 0; ccli < len; ccli++)                    \
   788             *dst++ = XFIXNAT (ccl_prog[ic + ccli]) & 0xFFFFFF;  \
   789         else                                                    \
   790           for (ccli = 0; ccli < len; ccli++)                    \
   791             *dst++ = ((XFIXNAT (ccl_prog[ic + (ccli / 3)]))     \
   792                       >> ((2 - (ccli % 3)) * 8)) & 0xFF;        \
   793       }                                                         \
   794     else                                                        \
   795       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);                    \
   796   } while (0)
   797 
   798 /* Read one byte from the current input buffer into Rth register.  */
   799 #define CCL_READ_CHAR(r)                        \
   800   do {                                          \
   801     if (! src)                                  \
   802       CCL_INVALID_CMD;                          \
   803     else if (src < src_end)                     \
   804       r = *src++;                               \
   805     else if (ccl->last_block)                   \
   806       {                                         \
   807         r = -1;                                 \
   808         ic = ccl->eof_ic;                       \
   809         goto ccl_repeat;                        \
   810       }                                         \
   811     else                                        \
   812       CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);    \
   813     } while (0)
   814 
   815 /* Decode CODE by a charset whose id is ID.  If ID is 0, return CODE
   816    as is for backward compatibility.  Assume that we can use the
   817    variable `charset'.  */
   818 
   819 #define CCL_DECODE_CHAR(id, code)       \
   820   ((id) == 0 ? (code)                   \
   821    : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
   822 
   823 /* Encode character C by some of charsets in CHARSET_LIST.  Set ID to
   824    the id of the used charset, ENCODED to the result of encoding.
   825    Assume that we can use the variable `charset'.  */
   826 
   827 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded)           \
   828   do {                                                          \
   829     unsigned ncode;                                             \
   830                                                                 \
   831     charset = char_charset ((c), (charset_list), &ncode);       \
   832     if (! charset && ! NILP (charset_list))                     \
   833       charset = char_charset ((c), Qnil, &ncode);               \
   834     if (charset)                                                \
   835       {                                                         \
   836         (id) = CHARSET_ID (charset);                            \
   837         (encoded) = ncode;                                      \
   838       }                                                         \
   839    } while (0)
   840 
   841 /* Execute CCL code on characters at SOURCE (length SRC_SIZE).  The
   842    resulting text goes to a place pointed by DESTINATION, the length
   843    of which should not exceed DST_SIZE.  As a side effect, how many
   844    characters are consumed and produced are recorded in CCL->consumed
   845    and CCL->produced, and the contents of CCL registers are updated.
   846    If SOURCE or DESTINATION is NULL, only operations on registers are
   847    permitted.  */
   848 
   849 #ifdef CCL_DEBUG
   850 #define CCL_DEBUG_BACKTRACE_LEN 256
   851 int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
   852 int ccl_backtrace_idx;
   853 
   854 int
   855 ccl_debug_hook (int ic)
   856 {
   857   return ic;
   858 }
   859 
   860 #endif
   861 
   862 struct ccl_prog_stack
   863   {
   864     Lisp_Object *ccl_prog;      /* Pointer to an array of CCL code.  */
   865     int ic;                     /* Instruction Counter.  */
   866     int eof_ic;                 /* Instruction Counter to jump on EOF.  */
   867   };
   868 
   869 /* For the moment, we only support depth 256 of stack.  */
   870 static struct ccl_prog_stack ccl_prog_stack_struct[256];
   871 
   872 /* Return a translation table of id number ID.  */
   873 static inline Lisp_Object
   874 GET_TRANSLATION_TABLE (int id)
   875 {
   876   return XCDR (XVECTOR (Vtranslation_table_vector)->contents[id]);
   877 }
   878 
   879 void
   880 ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
   881 {
   882   register int *reg = ccl->reg;
   883   register int ic = ccl->ic;
   884   register int code = 0, field1, field2;
   885   register Lisp_Object *ccl_prog = ccl->prog;
   886   int *src = source, *src_end = src + src_size;
   887   int *dst = destination, *dst_end = dst + dst_size;
   888   int jump_address;
   889   int i = 0, j, op;
   890   int stack_idx = ccl->stack_idx;
   891   /* Instruction counter of the current CCL code. */
   892   int this_ic = 0;
   893   struct charset *charset;
   894   int eof_ic = ccl->eof_ic;
   895   int eof_hit = 0;
   896 
   897   if (ccl->buf_magnification == 0) /* We can't read/produce any bytes.  */
   898     dst = NULL;
   899 
   900   /* Set mapping stack pointer. */
   901   mapping_stack_pointer = mapping_stack;
   902 
   903 #ifdef CCL_DEBUG
   904   ccl_backtrace_idx = 0;
   905 #endif
   906 
   907   for (;;)
   908     {
   909     ccl_repeat:
   910 #ifdef CCL_DEBUG
   911       ccl_backtrace_table[ccl_backtrace_idx++] = ic;
   912       if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
   913         ccl_backtrace_idx = 0;
   914       ccl_backtrace_table[ccl_backtrace_idx] = 0;
   915 #endif
   916 
   917       if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
   918         {
   919           /* We can't just signal Qquit, instead break the loop as if
   920              the whole data is processed.  Don't reset Vquit_flag, it
   921              must be handled later at a safer place.  */
   922           if (src)
   923             src = source + src_size;
   924           ccl->status = CCL_STAT_QUIT;
   925           break;
   926         }
   927 
   928       this_ic = ic;
   929       GET_CCL_CODE (code, ccl_prog, ic++);
   930       field1 = code >> 8;
   931       field2 = (code & 0xFF) >> 5;
   932 
   933 #define rrr field2
   934 #define RRR (field1 & 7)
   935 #define Rrr ((field1 >> 3) & 7)
   936 #define ADDR field1
   937 #define EXCMD (field1 >> 6)
   938 
   939       switch (code & 0x1F)
   940         {
   941         case CCL_SetRegister:   /* 00000000000000000RRRrrrXXXXX */
   942           reg[rrr] = reg[RRR];
   943           break;
   944 
   945         case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
   946           reg[rrr] = field1;
   947           break;
   948 
   949         case CCL_SetConst:      /* 00000000000000000000rrrXXXXX */
   950           reg[rrr] = XFIXNUM (ccl_prog[ic++]);
   951           break;
   952 
   953         case CCL_SetArray:      /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
   954           i = reg[RRR];
   955           j = field1 >> 3;
   956           if (0 <= i && i < j)
   957             reg[rrr] = XFIXNUM (ccl_prog[ic + i]);
   958           ic += j;
   959           break;
   960 
   961         case CCL_Jump:          /* A--D--D--R--E--S--S-000XXXXX */
   962           ic += ADDR;
   963           break;
   964 
   965         case CCL_JumpCond:      /* A--D--D--R--E--S--S-rrrXXXXX */
   966           if (!reg[rrr])
   967             ic += ADDR;
   968           break;
   969 
   970         case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   971           i = reg[rrr];
   972           CCL_WRITE_CHAR (i);
   973           ic += ADDR;
   974           break;
   975 
   976         case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   977           i = reg[rrr];
   978           CCL_WRITE_CHAR (i);
   979           ic++;
   980           CCL_READ_CHAR (reg[rrr]);
   981           ic += ADDR - 1;
   982           break;
   983 
   984         case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
   985           i = XFIXNUM (ccl_prog[ic]);
   986           CCL_WRITE_CHAR (i);
   987           ic += ADDR;
   988           break;
   989 
   990         case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
   991           i = XFIXNUM (ccl_prog[ic]);
   992           CCL_WRITE_CHAR (i);
   993           ic++;
   994           CCL_READ_CHAR (reg[rrr]);
   995           ic += ADDR - 1;
   996           break;
   997 
   998         case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
   999           j = XFIXNUM (ccl_prog[ic++]);
  1000           CCL_WRITE_STRING (j);
  1001           ic += ADDR - 1;
  1002           break;
  1003 
  1004         case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
  1005           i = reg[rrr];
  1006           j = XFIXNUM (ccl_prog[ic]);
  1007           if (0 <= i && i < j)
  1008             {
  1009               i = XFIXNUM (ccl_prog[ic + 1 + i]);
  1010               CCL_WRITE_CHAR (i);
  1011             }
  1012           ic += j + 2;
  1013           CCL_READ_CHAR (reg[rrr]);
  1014           ic += ADDR - (j + 2);
  1015           break;
  1016 
  1017         case CCL_ReadJump:      /* A--D--D--R--E--S--S-rrrYYYYY */
  1018           CCL_READ_CHAR (reg[rrr]);
  1019           ic += ADDR;
  1020           break;
  1021 
  1022         case CCL_ReadBranch:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1023           CCL_READ_CHAR (reg[rrr]);
  1024           FALLTHROUGH;
  1025         case CCL_Branch:        /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1026         {
  1027           int ioff = 0 <= reg[rrr] && reg[rrr] < field1 ? reg[rrr] : field1;
  1028           int incr = XFIXNUM (ccl_prog[ic + ioff]);
  1029           ic += incr;
  1030         }
  1031           break;
  1032 
  1033         case CCL_ReadRegister:  /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
  1034           while (1)
  1035             {
  1036               CCL_READ_CHAR (reg[rrr]);
  1037               if (!field1) break;
  1038               GET_CCL_CODE (code, ccl_prog, ic++);
  1039               field1 = code >> 8;
  1040               field2 = (code & 0xFF) >> 5;
  1041             }
  1042           break;
  1043 
  1044         case CCL_WriteExprConst:  /* 1:00000OPERATION000RRR000XXXXX */
  1045           rrr = 7;
  1046           i = reg[RRR];
  1047           j = XFIXNUM (ccl_prog[ic]);
  1048           op = field1 >> 6;
  1049           jump_address = ic + 1;
  1050           goto ccl_set_expr;
  1051 
  1052         case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1053           while (1)
  1054             {
  1055               i = reg[rrr];
  1056               CCL_WRITE_CHAR (i);
  1057               if (!field1) break;
  1058               GET_CCL_CODE (code, ccl_prog, ic++);
  1059               field1 = code >> 8;
  1060               field2 = (code & 0xFF) >> 5;
  1061             }
  1062           break;
  1063 
  1064         case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
  1065           rrr = 7;
  1066           i = reg[RRR];
  1067           j = reg[Rrr];
  1068           op = field1 >> 6;
  1069           jump_address = ic;
  1070           goto ccl_set_expr;
  1071 
  1072         case CCL_Call:          /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
  1073           {
  1074             Lisp_Object slot;
  1075             int prog_id;
  1076 
  1077             /* If FFF is nonzero, the CCL program ID is in the
  1078                following code.  */
  1079             if (rrr)
  1080               prog_id = XFIXNUM (ccl_prog[ic++]);
  1081             else
  1082               prog_id = field1;
  1083 
  1084             if (stack_idx >= 256
  1085                 || prog_id < 0
  1086                 || prog_id >= ASIZE (Vccl_program_table)
  1087                 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
  1088                 || !VECTORP (AREF (slot, 1)))
  1089               {
  1090                 if (stack_idx > 0)
  1091                   {
  1092                     ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
  1093                     ic = ccl_prog_stack_struct[0].ic;
  1094                     eof_ic = ccl_prog_stack_struct[0].eof_ic;
  1095                   }
  1096                 CCL_INVALID_CMD;
  1097               }
  1098 
  1099             ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
  1100             ccl_prog_stack_struct[stack_idx].ic = ic;
  1101             ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
  1102             stack_idx++;
  1103             ccl_prog = XVECTOR (AREF (slot, 1))->contents;
  1104             ic = CCL_HEADER_MAIN;
  1105             eof_ic = XFIXNAT (ccl_prog[CCL_HEADER_EOF]);
  1106           }
  1107           break;
  1108 
  1109         case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1110           if (!rrr)
  1111             CCL_WRITE_CHAR (field1);
  1112           else
  1113             {
  1114               CCL_WRITE_STRING (field1);
  1115               ic += (field1 + 2) / 3;
  1116             }
  1117           break;
  1118 
  1119         case CCL_WriteArray:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
  1120           i = reg[rrr];
  1121           if (0 <= i && i < field1)
  1122             {
  1123               j = XFIXNUM (ccl_prog[ic + i]);
  1124               CCL_WRITE_CHAR (j);
  1125             }
  1126           ic += field1;
  1127           break;
  1128 
  1129         case CCL_End:           /* 0000000000000000000000XXXXX */
  1130           if (stack_idx > 0)
  1131             {
  1132               stack_idx--;
  1133               ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
  1134               ic = ccl_prog_stack_struct[stack_idx].ic;
  1135               eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
  1136               if (eof_hit)
  1137                 ic = eof_ic;
  1138               break;
  1139             }
  1140           if (src)
  1141             src = src_end;
  1142           /* ccl->ic should points to this command code again to
  1143              suppress further processing.  */
  1144           ic--;
  1145           CCL_SUCCESS;
  1146 
  1147         case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
  1148           i = XFIXNUM (ccl_prog[ic++]);
  1149           op = field1 >> 6;
  1150           goto ccl_expr_self;
  1151 
  1152         case CCL_ExprSelfReg:   /* 00000OPERATION000RRRrrrXXXXX */
  1153           i = reg[RRR];
  1154           op = field1 >> 6;
  1155 
  1156         ccl_expr_self:
  1157           switch (op)
  1158             {
  1159             case CCL_PLUS: ckd_add (&reg[rrr], reg[rrr], i); break;
  1160             case CCL_MINUS: ckd_sub (&reg[rrr], reg[rrr], i); break;
  1161             case CCL_MUL: ckd_mul (&reg[rrr], reg[rrr], i); break;
  1162             case CCL_DIV:
  1163               if (!i)
  1164                 CCL_INVALID_CMD;
  1165               if (!INT_DIVIDE_OVERFLOW (reg[rrr], i))
  1166                 reg[rrr] /= i;
  1167               break;
  1168             case CCL_MOD:
  1169               if (!i)
  1170                 CCL_INVALID_CMD;
  1171               reg[rrr] = i == -1 ? 0 : reg[rrr] % i;
  1172               break;
  1173             case CCL_AND: reg[rrr] &= i; break;
  1174             case CCL_OR: reg[rrr] |= i; break;
  1175             case CCL_XOR: reg[rrr] ^= i; break;
  1176             case CCL_LSH:
  1177               if (i < 0)
  1178                 CCL_INVALID_CMD;
  1179               reg[rrr] = i < UINT_WIDTH ? (unsigned) reg[rrr] << i : 0;
  1180               break;
  1181             case CCL_RSH:
  1182               if (i < 0)
  1183                 CCL_INVALID_CMD;
  1184               reg[rrr] = reg[rrr] >> min (i, INT_WIDTH - 1);
  1185               break;
  1186             case CCL_LSH8:
  1187               reg[rrr] = (unsigned) reg[rrr] << 8;
  1188               reg[rrr] |= i;
  1189               break;
  1190             case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
  1191             case CCL_DIVMOD:
  1192               if (!i)
  1193                 CCL_INVALID_CMD;
  1194               if (i == -1)
  1195                 {
  1196                   reg[7] = 0;
  1197                   ckd_sub (&reg[rrr], 0, reg[rrr]);
  1198                 }
  1199               else
  1200                 {
  1201                   reg[7] = reg[rrr] % i;
  1202                   reg[rrr] /= i;
  1203                 }
  1204               break;
  1205             case CCL_LS: reg[rrr] = reg[rrr] < i; break;
  1206             case CCL_GT: reg[rrr] = reg[rrr] > i; break;
  1207             case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
  1208             case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
  1209             case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
  1210             case CCL_NE: reg[rrr] = reg[rrr] != i; break;
  1211             default: CCL_INVALID_CMD;
  1212             }
  1213           break;
  1214 
  1215         case CCL_SetExprConst:  /* 00000OPERATION000RRRrrrXXXXX */
  1216           i = reg[RRR];
  1217           j = XFIXNUM (ccl_prog[ic++]);
  1218           op = field1 >> 6;
  1219           jump_address = ic;
  1220           goto ccl_set_expr;
  1221 
  1222         case CCL_SetExprReg:    /* 00000OPERATIONRrrRRRrrrXXXXX */
  1223           i = reg[RRR];
  1224           j = reg[Rrr];
  1225           op = field1 >> 6;
  1226           jump_address = ic;
  1227           goto ccl_set_expr;
  1228 
  1229         case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
  1230           CCL_READ_CHAR (reg[rrr]);
  1231           FALLTHROUGH;
  1232         case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
  1233           i = reg[rrr];
  1234           jump_address = ic + ADDR;
  1235           op = XFIXNUM (ccl_prog[ic++]);
  1236           j = XFIXNUM (ccl_prog[ic++]);
  1237           rrr = 7;
  1238           goto ccl_set_expr;
  1239 
  1240         case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
  1241           CCL_READ_CHAR (reg[rrr]);
  1242           FALLTHROUGH;
  1243         case CCL_JumpCondExprReg:
  1244           i = reg[rrr];
  1245           jump_address = ic + ADDR;
  1246           op = XFIXNUM (ccl_prog[ic++]);
  1247           GET_CCL_RANGE (j, ccl_prog, ic++, 0, 7);
  1248           j = reg[j];
  1249           rrr = 7;
  1250 
  1251         ccl_set_expr:
  1252           switch (op)
  1253             {
  1254             case CCL_PLUS: ckd_add (&reg[rrr], i, j); break;
  1255             case CCL_MINUS: ckd_sub (&reg[rrr], i, j); break;
  1256             case CCL_MUL: ckd_mul (&reg[rrr], i, j); break;
  1257             case CCL_DIV:
  1258               if (!j)
  1259                 CCL_INVALID_CMD;
  1260               if (!INT_DIVIDE_OVERFLOW (i, j))
  1261                 i /= j;
  1262               reg[rrr] = i;
  1263               break;
  1264             case CCL_MOD:
  1265               if (!j)
  1266                 CCL_INVALID_CMD;
  1267               reg[rrr] = j == -1 ? 0 : i % j;
  1268               break;
  1269             case CCL_AND: reg[rrr] = i & j; break;
  1270             case CCL_OR: reg[rrr] = i | j; break;
  1271             case CCL_XOR: reg[rrr] = i ^ j; break;
  1272             case CCL_LSH:
  1273               if (j < 0)
  1274                 CCL_INVALID_CMD;
  1275               reg[rrr] = j < UINT_WIDTH ? (unsigned) i << j : 0;
  1276               break;
  1277             case CCL_RSH:
  1278               if (j < 0)
  1279                 CCL_INVALID_CMD;
  1280               reg[rrr] = i >> min (j, INT_WIDTH - 1);
  1281               break;
  1282             case CCL_LSH8:
  1283               reg[rrr] = ((unsigned) i << 8) | j;
  1284               break;
  1285             case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
  1286             case CCL_DIVMOD:
  1287               if (!j)
  1288                 CCL_INVALID_CMD;
  1289               if (j == -1)
  1290                 {
  1291                   ckd_sub (&reg[rrr], 0, reg[rrr]);
  1292                   reg[7] = 0;
  1293                 }
  1294               else
  1295                 {
  1296                   reg[rrr] = i / j;
  1297                   reg[7] = i % j;
  1298                 }
  1299               break;
  1300             case CCL_LS: reg[rrr] = i < j; break;
  1301             case CCL_GT: reg[rrr] = i > j; break;
  1302             case CCL_EQ: reg[rrr] = i == j; break;
  1303             case CCL_LE: reg[rrr] = i <= j; break;
  1304             case CCL_GE: reg[rrr] = i >= j; break;
  1305             case CCL_NE: reg[rrr] = i != j; break;
  1306             case CCL_DECODE_SJIS:
  1307               {
  1308                 i = ((unsigned) i << 8) | j;
  1309                 SJIS_TO_JIS (i);
  1310                 reg[rrr] = i >> 8;
  1311                 reg[7] = i & 0xFF;
  1312                 break;
  1313               }
  1314             case CCL_ENCODE_SJIS:
  1315               {
  1316                 i = ((unsigned) i << 8) | j;
  1317                 JIS_TO_SJIS (i);
  1318                 reg[rrr] = i >> 8;
  1319                 reg[7] = i & 0xFF;
  1320                 break;
  1321               }
  1322             default: CCL_INVALID_CMD;
  1323             }
  1324           code &= 0x1F;
  1325           if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
  1326             {
  1327               i = reg[rrr];
  1328               CCL_WRITE_CHAR (i);
  1329               ic = jump_address;
  1330             }
  1331           else if (!reg[rrr])
  1332             ic = jump_address;
  1333           break;
  1334 
  1335         case CCL_Extension:
  1336           switch (EXCMD)
  1337             {
  1338             case CCL_ReadMultibyteChar2:
  1339               if (!src)
  1340                 CCL_INVALID_CMD;
  1341               CCL_READ_CHAR (i);
  1342               CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
  1343               break;
  1344 
  1345             case CCL_WriteMultibyteChar2:
  1346               if (! dst)
  1347                 CCL_INVALID_CMD;
  1348               i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1349               CCL_WRITE_CHAR (i);
  1350               break;
  1351 
  1352             case CCL_TranslateCharacter:
  1353               i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1354               op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
  1355               CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
  1356               break;
  1357 
  1358             case CCL_TranslateCharacterConstTbl:
  1359               {
  1360                 ptrdiff_t eop;
  1361                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1362                                (VECTORP (Vtranslation_table_vector)
  1363                                 ? ASIZE (Vtranslation_table_vector)
  1364                                 : -1));
  1365                 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1366                 op = translate_char (GET_TRANSLATION_TABLE (eop), i);
  1367                 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
  1368               }
  1369               break;
  1370 
  1371             case CCL_LookupIntConstTbl:
  1372               {
  1373                 ptrdiff_t eop;
  1374                 struct Lisp_Hash_Table *h;
  1375                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1376                                (VECTORP (Vtranslation_hash_table_vector)
  1377                                 ? ASIZE (Vtranslation_hash_table_vector)
  1378                                 : -1));
  1379                 h = GET_HASH_TABLE (eop);
  1380 
  1381                 eop = (FIXNUM_OVERFLOW_P (reg[RRR])
  1382                        ? -1
  1383                        : hash_lookup (h, make_fixnum (reg[RRR]), NULL));
  1384                 if (eop >= 0)
  1385                   {
  1386                     Lisp_Object opl;
  1387                     opl = HASH_VALUE (h, eop);
  1388                     if (! (IN_INT_RANGE (eop) && CHARACTERP (opl)))
  1389                       CCL_INVALID_CMD;
  1390                     reg[RRR] = charset_unicode;
  1391                     reg[rrr] = XFIXNUM (opl);
  1392                     reg[7] = 1; /* r7 true for success */
  1393                   }
  1394                 else
  1395                   reg[7] = 0;
  1396               }
  1397               break;
  1398 
  1399             case CCL_LookupCharConstTbl:
  1400               {
  1401                 ptrdiff_t eop;
  1402                 struct Lisp_Hash_Table *h;
  1403                 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
  1404                                (VECTORP (Vtranslation_hash_table_vector)
  1405                                 ? ASIZE (Vtranslation_hash_table_vector)
  1406                                 : -1));
  1407                 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
  1408                 h = GET_HASH_TABLE (eop);
  1409 
  1410                 eop = (FIXNUM_OVERFLOW_P (i)
  1411                        ? -1
  1412                        : hash_lookup (h, make_fixnum (i), NULL));
  1413                 if (eop >= 0)
  1414                   {
  1415                     Lisp_Object opl;
  1416                     opl = HASH_VALUE (h, eop);
  1417                     if (! (FIXNUMP (opl) && IN_INT_RANGE (XFIXNUM (opl))))
  1418                       CCL_INVALID_CMD;
  1419                     reg[RRR] = XFIXNUM (opl);
  1420                     reg[7] = 1; /* r7 true for success */
  1421                   }
  1422                 else
  1423                   reg[7] = 0;
  1424               }
  1425               break;
  1426 
  1427             case CCL_IterateMultipleMap:
  1428               {
  1429                 Lisp_Object map, content, attrib, value;
  1430                 EMACS_INT point;
  1431                 ptrdiff_t size;
  1432                 int fin_ic;
  1433 
  1434                 j = XFIXNUM (ccl_prog[ic++]); /* number of maps. */
  1435                 fin_ic = ic + j;
  1436                 op = reg[rrr];
  1437                 if ((j > reg[RRR]) && (j >= 0))
  1438                   {
  1439                     ic += reg[RRR];
  1440                     i = reg[RRR];
  1441                   }
  1442                 else
  1443                   {
  1444                     reg[RRR] = -1;
  1445                     ic = fin_ic;
  1446                     break;
  1447                   }
  1448 
  1449                 for (;i < j;i++)
  1450                   {
  1451                     if (!VECTORP (Vcode_conversion_map_vector)) continue;
  1452                     size = ASIZE (Vcode_conversion_map_vector);
  1453                     point = XFIXNUM (ccl_prog[ic++]);
  1454                     if (! (0 <= point && point < size)) continue;
  1455                     map = AREF (Vcode_conversion_map_vector, point);
  1456 
  1457                     /* Check map validity.  */
  1458                     if (!CONSP (map)) continue;
  1459                     map = XCDR (map);
  1460                     if (!VECTORP (map)) continue;
  1461                     size = ASIZE (map);
  1462                     if (size <= 1) continue;
  1463 
  1464                     content = AREF (map, 0);
  1465 
  1466                     /* check map type,
  1467                        [STARTPOINT VAL1 VAL2 ...] or
  1468                        [t ELEMENT STARTPOINT ENDPOINT]  */
  1469                     if (FIXNUMP (content))
  1470                       {
  1471                         point = XFIXNUM (content);
  1472                         if (!(point <= op && op - point + 1 < size)) continue;
  1473                         content = AREF (map, op - point + 1);
  1474                       }
  1475                     else if (EQ (content, Qt))
  1476                       {
  1477                         if (size != 4) continue;
  1478                         if (FIXNUMP (AREF (map, 2))
  1479                             && XFIXNUM (AREF (map, 2)) <= op
  1480                             && FIXNUMP (AREF (map, 3))
  1481                             && op < XFIXNUM (AREF (map, 3)))
  1482                           content = AREF (map, 1);
  1483                         else
  1484                           continue;
  1485                       }
  1486                     else
  1487                       continue;
  1488 
  1489                     if (NILP (content))
  1490                       continue;
  1491                     else if (FIXNUMP (content) && IN_INT_RANGE (XFIXNUM (content)))
  1492                       {
  1493                         reg[RRR] = i;
  1494                         reg[rrr] = XFIXNUM (content);
  1495                         break;
  1496                       }
  1497                     else if (EQ (content, Qt) || EQ (content, Qlambda))
  1498                       {
  1499                         reg[RRR] = i;
  1500                         break;
  1501                       }
  1502                     else if (CONSP (content))
  1503                       {
  1504                         attrib = XCAR (content);
  1505                         value = XCDR (content);
  1506                         if (! (FIXNUMP (attrib) && FIXNUMP (value)
  1507                                && IN_INT_RANGE (XFIXNUM (value))))
  1508                           continue;
  1509                         reg[RRR] = i;
  1510                         reg[rrr] = XFIXNUM (value);
  1511                         break;
  1512                       }
  1513                     else if (SYMBOLP (content))
  1514                       CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
  1515                     else
  1516                       CCL_INVALID_CMD;
  1517                   }
  1518                 if (i == j)
  1519                   reg[RRR] = -1;
  1520                 ic = fin_ic;
  1521               }
  1522               break;
  1523 
  1524             case CCL_MapMultiple:
  1525               {
  1526                 Lisp_Object map, content, attrib, value;
  1527                 EMACS_INT point;
  1528                 ptrdiff_t size, map_vector_size;
  1529                 int map_set_rest_length, fin_ic;
  1530                 int current_ic = this_ic;
  1531 
  1532                 /* inhibit recursive call on MapMultiple. */
  1533                 if (stack_idx_of_map_multiple > 0)
  1534                   {
  1535                     if (stack_idx_of_map_multiple <= stack_idx)
  1536                       {
  1537                         stack_idx_of_map_multiple = 0;
  1538                         mapping_stack_pointer = mapping_stack;
  1539                         CCL_INVALID_CMD;
  1540                       }
  1541                   }
  1542                 else
  1543                   mapping_stack_pointer = mapping_stack;
  1544                 stack_idx_of_map_multiple = 0;
  1545 
  1546                 /* Get number of maps and separators.  */
  1547                 map_set_rest_length = XFIXNUM (ccl_prog[ic++]);
  1548 
  1549                 fin_ic = ic + map_set_rest_length;
  1550                 op = reg[rrr];
  1551 
  1552                 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
  1553                   {
  1554                     ic += reg[RRR];
  1555                     i = reg[RRR];
  1556                     map_set_rest_length -= i;
  1557                   }
  1558                 else
  1559                   {
  1560                     ic = fin_ic;
  1561                     reg[RRR] = -1;
  1562                     mapping_stack_pointer = mapping_stack;
  1563                     break;
  1564                   }
  1565 
  1566                 if (mapping_stack_pointer <= (mapping_stack + 1))
  1567                   {
  1568                     /* Set up initial state. */
  1569                     mapping_stack_pointer = mapping_stack;
  1570                     PUSH_MAPPING_STACK (0, op);
  1571                     reg[RRR] = -1;
  1572                   }
  1573                 else
  1574                   {
  1575                     /* Recover after calling other ccl program. */
  1576                     int orig_op;
  1577 
  1578                     POP_MAPPING_STACK (map_set_rest_length, orig_op);
  1579                     POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1580                     switch (op)
  1581                       {
  1582                       case -1:
  1583                         /* Regard it as Qnil. */
  1584                         op = orig_op;
  1585                         i++;
  1586                         ic++;
  1587                         map_set_rest_length--;
  1588                         break;
  1589                       case -2:
  1590                         /* Regard it as Qt. */
  1591                         op = reg[rrr];
  1592                         i++;
  1593                         ic++;
  1594                         map_set_rest_length--;
  1595                         break;
  1596                       case -3:
  1597                         /* Regard it as Qlambda. */
  1598                         op = orig_op;
  1599                         i += map_set_rest_length;
  1600                         ic += map_set_rest_length;
  1601                         map_set_rest_length = 0;
  1602                         break;
  1603                       default:
  1604                         /* Regard it as normal mapping. */
  1605                         i += map_set_rest_length;
  1606                         ic += map_set_rest_length;
  1607                         POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1608                         break;
  1609                       }
  1610                   }
  1611                 if (!VECTORP (Vcode_conversion_map_vector))
  1612                   CCL_INVALID_CMD;
  1613                 map_vector_size = ASIZE (Vcode_conversion_map_vector);
  1614 
  1615                 do {
  1616                   for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
  1617                     {
  1618                       point = XFIXNUM (ccl_prog[ic]);
  1619                       if (point < 0)
  1620                         {
  1621                           /* +1 is for including separator. */
  1622                           point = -point + 1;
  1623                           if (mapping_stack_pointer
  1624                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
  1625                             CCL_INVALID_CMD;
  1626                           PUSH_MAPPING_STACK (map_set_rest_length - point,
  1627                                               reg[rrr]);
  1628                           map_set_rest_length = point;
  1629                           reg[rrr] = op;
  1630                           continue;
  1631                         }
  1632 
  1633                       if (point >= map_vector_size) continue;
  1634                       map = AREF (Vcode_conversion_map_vector, point);
  1635 
  1636                       /* Check map validity.  */
  1637                       if (!CONSP (map)) continue;
  1638                       map = XCDR (map);
  1639                       if (!VECTORP (map)) continue;
  1640                       size = ASIZE (map);
  1641                       if (size <= 1) continue;
  1642 
  1643                       content = AREF (map, 0);
  1644 
  1645                       /* check map type,
  1646                          [STARTPOINT VAL1 VAL2 ...] or
  1647                          [t ELEMENT STARTPOINT ENDPOINT]  */
  1648                       if (FIXNUMP (content))
  1649                         {
  1650                           point = XFIXNUM (content);
  1651                           if (!(point <= op && op - point + 1 < size)) continue;
  1652                           content = AREF (map, op - point + 1);
  1653                         }
  1654                       else if (EQ (content, Qt))
  1655                         {
  1656                           if (size != 4) continue;
  1657                           if (FIXNUMP (AREF (map, 2))
  1658                               && XFIXNUM (AREF (map, 2)) <= op
  1659                               && FIXNUMP (AREF (map, 3))
  1660                               && op < XFIXNUM (AREF (map, 3)))
  1661                             content = AREF (map, 1);
  1662                           else
  1663                             continue;
  1664                         }
  1665                       else
  1666                         continue;
  1667 
  1668                       if (NILP (content))
  1669                         continue;
  1670 
  1671                       reg[RRR] = i;
  1672                       if (FIXNUMP (content) && IN_INT_RANGE (XFIXNUM (content)))
  1673                         {
  1674                           op = XFIXNUM (content);
  1675                           i += map_set_rest_length - 1;
  1676                           ic += map_set_rest_length - 1;
  1677                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1678                           map_set_rest_length++;
  1679                         }
  1680                       else if (CONSP (content))
  1681                         {
  1682                           attrib = XCAR (content);
  1683                           value = XCDR (content);
  1684                           if (! (FIXNUMP (attrib) && FIXNUMP (value)
  1685                                  && IN_INT_RANGE (XFIXNUM (value))))
  1686                             continue;
  1687                           op = XFIXNUM (value);
  1688                           i += map_set_rest_length - 1;
  1689                           ic += map_set_rest_length - 1;
  1690                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1691                           map_set_rest_length++;
  1692                         }
  1693                       else if (EQ (content, Qt))
  1694                         {
  1695                           op = reg[rrr];
  1696                         }
  1697                       else if (EQ (content, Qlambda))
  1698                         {
  1699                           i += map_set_rest_length;
  1700                           ic += map_set_rest_length;
  1701                           break;
  1702                         }
  1703                       else if (SYMBOLP (content))
  1704                         {
  1705                           if (mapping_stack_pointer
  1706                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
  1707                             CCL_INVALID_CMD;
  1708                           PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1709                           PUSH_MAPPING_STACK (map_set_rest_length, op);
  1710                           stack_idx_of_map_multiple = stack_idx + 1;
  1711                           CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
  1712                         }
  1713                       else
  1714                         CCL_INVALID_CMD;
  1715                     }
  1716                   if (mapping_stack_pointer <= (mapping_stack + 1))
  1717                     break;
  1718                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1719                   i += map_set_rest_length;
  1720                   ic += map_set_rest_length;
  1721                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
  1722                 } while (1);
  1723 
  1724                 ic = fin_ic;
  1725               }
  1726               reg[rrr] = op;
  1727               break;
  1728 
  1729             case CCL_MapSingle:
  1730               {
  1731                 Lisp_Object map, attrib, value, content;
  1732                 int point;
  1733                 j = XFIXNUM (ccl_prog[ic++]); /* map_id */
  1734                 op = reg[rrr];
  1735                 if (! (VECTORP (Vcode_conversion_map_vector)
  1736                        && j < ASIZE (Vcode_conversion_map_vector)))
  1737                   {
  1738                     reg[RRR] = -1;
  1739                     break;
  1740                   }
  1741                 map = AREF (Vcode_conversion_map_vector, j);
  1742                 if (!CONSP (map))
  1743                   {
  1744                     reg[RRR] = -1;
  1745                     break;
  1746                   }
  1747                 map = XCDR (map);
  1748                 if (! (VECTORP (map)
  1749                        && 0 < ASIZE (map)
  1750                        && FIXNUMP (AREF (map, 0))
  1751                        && XFIXNUM (AREF (map, 0)) <= op
  1752                        && op - XFIXNUM (AREF (map, 0)) + 1 < ASIZE (map)))
  1753                   {
  1754                     reg[RRR] = -1;
  1755                     break;
  1756                   }
  1757                 point = op - XFIXNUM (AREF (map, 0)) + 1;
  1758                 reg[RRR] = 0;
  1759                 content = AREF (map, point);
  1760                 if (NILP (content))
  1761                   reg[RRR] = -1;
  1762                 else if (TYPE_RANGED_FIXNUMP (int, content))
  1763                   reg[rrr] = XFIXNUM (content);
  1764                 else if (EQ (content, Qt));
  1765                 else if (CONSP (content))
  1766                   {
  1767                     attrib = XCAR (content);
  1768                     value = XCDR (content);
  1769                     if (!FIXNUMP (attrib)
  1770                         || !TYPE_RANGED_FIXNUMP (int, value))
  1771                       continue;
  1772                     reg[rrr] = XFIXNUM (value);
  1773                     break;
  1774                   }
  1775                 else if (SYMBOLP (content))
  1776                   CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
  1777                 else
  1778                   reg[RRR] = -1;
  1779               }
  1780               break;
  1781 
  1782             default:
  1783               CCL_INVALID_CMD;
  1784             }
  1785           break;
  1786 
  1787         default:
  1788           CCL_INVALID_CMD;
  1789         }
  1790     }
  1791 
  1792  ccl_error_handler:
  1793   if (destination)
  1794     {
  1795       /* We can insert an error message only if DESTINATION is
  1796          specified and we still have a room to store the message
  1797          there.  */
  1798       char msg[256];
  1799       int msglen;
  1800 
  1801       if (!dst)
  1802         dst = destination;
  1803 
  1804       switch (ccl->status)
  1805         {
  1806         case CCL_STAT_INVALID_CMD:
  1807           msglen = sprintf (msg,
  1808                             "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
  1809                             code & 0x1Fu, code + 0u, this_ic);
  1810 #ifdef CCL_DEBUG
  1811           {
  1812             int i = ccl_backtrace_idx - 1;
  1813             int j;
  1814 
  1815             if (dst + msglen <= (dst_bytes ? dst_end : src))
  1816               {
  1817                 memcpy (dst, msg, msglen);
  1818                 dst += msglen;
  1819               }
  1820 
  1821             for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
  1822               {
  1823                 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
  1824                 if (ccl_backtrace_table[i] == 0)
  1825                   break;
  1826                 msglen = sprintf (msg, " %d", ccl_backtrace_table[i]);
  1827                 if (dst + msglen > (dst_bytes ? dst_end : src))
  1828                   break;
  1829                 memcpy (dst, msg, msglen);
  1830                 dst += msglen;
  1831               }
  1832             goto ccl_finish;
  1833           }
  1834 #endif
  1835           break;
  1836 
  1837         case CCL_STAT_QUIT:
  1838           msglen = ccl->quit_silently ? 0 : sprintf (msg, "\nCCL: Quitted.");
  1839           break;
  1840 
  1841         default:
  1842           msglen = sprintf (msg, "\nCCL: Unknown error type (%d)", ccl->status);
  1843         }
  1844 
  1845       if (msglen <= dst_end - dst)
  1846         {
  1847           for (i = 0; i < msglen; i++)
  1848             *dst++ = msg[i];
  1849         }
  1850 
  1851       if (ccl->status == CCL_STAT_INVALID_CMD)
  1852         {
  1853 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
  1854          results in an invalid multibyte sequence.  */
  1855 
  1856           /* Copy the remaining source data.  */
  1857           int i = src_end - src;
  1858           if (dst_bytes && (dst_end - dst) < i)
  1859             i = dst_end - dst;
  1860           memcpy (dst, src, i);
  1861           src += i;
  1862           dst += i;
  1863 #else
  1864           /* Signal that we've consumed everything.  */
  1865           src = src_end;
  1866 #endif
  1867         }
  1868     }
  1869 
  1870  ccl_finish:
  1871   ccl->ic = ic;
  1872   ccl->stack_idx = stack_idx;
  1873   ccl->prog = ccl_prog;
  1874   ccl->consumed = src - source;
  1875   if (dst != NULL)
  1876     ccl->produced = dst - destination;
  1877   else
  1878     ccl->produced = 0;
  1879 }
  1880 
  1881 /* Resolve symbols in the specified CCL code (Lisp vector).  This
  1882    function converts symbols of code conversion maps and character
  1883    translation tables embedded in the CCL code into their ID numbers.
  1884 
  1885    The return value is a new vector in which all symbols are resolved,
  1886    Qt if resolving of some symbol failed,
  1887    or nil if CCL contains invalid data.  */
  1888 
  1889 static Lisp_Object
  1890 resolve_symbol_ccl_program (Lisp_Object ccl)
  1891 {
  1892   int i, veclen, unresolved = 0;
  1893   Lisp_Object result, contents, val;
  1894 
  1895   if (! (CCL_HEADER_MAIN < ASIZE (ccl) && ASIZE (ccl) <= INT_MAX))
  1896     return Qnil;
  1897   result = Fcopy_sequence (ccl);
  1898   veclen = ASIZE (result);
  1899 
  1900   for (i = 0; i < veclen; i++)
  1901     {
  1902       contents = AREF (result, i);
  1903       if (TYPE_RANGED_FIXNUMP (int, contents))
  1904         continue;
  1905       else if (CONSP (contents)
  1906                && SYMBOLP (XCAR (contents))
  1907                && SYMBOLP (XCDR (contents)))
  1908         {
  1909           /* This is the new style for embedding symbols.  The form is
  1910              (SYMBOL . PROPERTY).  (get SYMBOL PROPERTY) should give
  1911              an index number.  */
  1912           val = Fget (XCAR (contents), XCDR (contents));
  1913           if (RANGED_FIXNUMP (0, val, INT_MAX))
  1914             ASET (result, i, val);
  1915           else
  1916             unresolved = 1;
  1917           continue;
  1918         }
  1919       else if (SYMBOLP (contents))
  1920         {
  1921           /* This is the old style for embedding symbols.  This style
  1922              may lead to a bug if, for instance, a translation table
  1923              and a code conversion map have the same name.  */
  1924           val = Fget (contents, Qtranslation_table_id);
  1925           if (RANGED_FIXNUMP (0, val, INT_MAX))
  1926             ASET (result, i, val);
  1927           else
  1928             {
  1929               val = Fget (contents, Qcode_conversion_map_id);
  1930               if (RANGED_FIXNUMP (0, val, INT_MAX))
  1931                 ASET (result, i, val);
  1932               else
  1933                 {
  1934                   val = Fget (contents, Qccl_program_idx);
  1935                   if (RANGED_FIXNUMP (0, val, INT_MAX))
  1936                     ASET (result, i, val);
  1937                   else
  1938                     unresolved = 1;
  1939                 }
  1940             }
  1941           continue;
  1942         }
  1943       return Qnil;
  1944     }
  1945 
  1946   if (! (0 <= XFIXNUM (AREF (result, CCL_HEADER_BUF_MAG))
  1947          && ASCENDING_ORDER (0, XFIXNUM (AREF (result, CCL_HEADER_EOF)),
  1948                              ASIZE (ccl))))
  1949     return Qnil;
  1950 
  1951   return (unresolved ? Qt : result);
  1952 }
  1953 
  1954 /* Return the compiled code (vector) of CCL program CCL_PROG.
  1955    CCL_PROG is a name (symbol) of the program or already compiled
  1956    code.  If necessary, resolve symbols in the compiled code to index
  1957    numbers.  If we failed to get the compiled code or to resolve
  1958    symbols, return Qnil.  */
  1959 
  1960 static Lisp_Object
  1961 ccl_get_compiled_code (Lisp_Object ccl_prog, ptrdiff_t *idx)
  1962 {
  1963   Lisp_Object val, slot;
  1964 
  1965   if (VECTORP (ccl_prog))
  1966     {
  1967       val = resolve_symbol_ccl_program (ccl_prog);
  1968       *idx = -1;
  1969       return (VECTORP (val) ? val : Qnil);
  1970     }
  1971   if (!SYMBOLP (ccl_prog))
  1972     return Qnil;
  1973 
  1974   val = Fget (ccl_prog, Qccl_program_idx);
  1975   if (! FIXNATP (val)
  1976       || XFIXNUM (val) >= ASIZE (Vccl_program_table))
  1977     return Qnil;
  1978   slot = AREF (Vccl_program_table, XFIXNUM (val));
  1979   if (! VECTORP (slot)
  1980       || ASIZE (slot) != 4
  1981       || ! VECTORP (AREF (slot, 1)))
  1982     return Qnil;
  1983   *idx = XFIXNUM (val);
  1984   if (NILP (AREF (slot, 2)))
  1985     {
  1986       val = resolve_symbol_ccl_program (AREF (slot, 1));
  1987       if (! VECTORP (val))
  1988         return Qnil;
  1989       ASET (slot, 1, val);
  1990       ASET (slot, 2, Qt);
  1991     }
  1992   return AREF (slot, 1);
  1993 }
  1994 
  1995 /* Setup fields of the structure pointed by CCL appropriately for the
  1996    execution of CCL program CCL_PROG.  CCL_PROG is the name (symbol)
  1997    of the CCL program or the already compiled code (vector).
  1998    Return true if successful.
  1999 
  2000    If CCL_PROG is nil, just reset the structure pointed by CCL.  */
  2001 bool
  2002 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
  2003 {
  2004   if (! NILP (ccl_prog))
  2005     {
  2006       struct Lisp_Vector *vp;
  2007 
  2008       ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
  2009       if (! VECTORP (ccl_prog))
  2010         return false;
  2011       vp = XVECTOR (ccl_prog);
  2012       ccl->size = vp->header.size;
  2013       ccl->prog = vp->contents;
  2014       ccl->eof_ic = XFIXNUM (vp->contents[CCL_HEADER_EOF]);
  2015       ccl->buf_magnification = XFIXNUM (vp->contents[CCL_HEADER_BUF_MAG]);
  2016       if (ccl->idx >= 0)
  2017         {
  2018           Lisp_Object slot;
  2019 
  2020           slot = AREF (Vccl_program_table, ccl->idx);
  2021           ASET (slot, 3, Qnil);
  2022         }
  2023     }
  2024   ccl->ic = CCL_HEADER_MAIN;
  2025   memset (ccl->reg, 0, sizeof ccl->reg);
  2026   ccl->last_block = false;
  2027   ccl->status = 0;
  2028   ccl->stack_idx = 0;
  2029   ccl->quit_silently = false;
  2030   return true;
  2031 }
  2032 
  2033 
  2034 DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
  2035        doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
  2036 See the documentation of `define-ccl-program' for the detail of CCL program.  */)
  2037   (Lisp_Object object)
  2038 {
  2039   Lisp_Object val;
  2040 
  2041   if (VECTORP (object))
  2042     {
  2043       val = resolve_symbol_ccl_program (object);
  2044       return (VECTORP (val) ? Qt : Qnil);
  2045     }
  2046   if (!SYMBOLP (object))
  2047     return Qnil;
  2048 
  2049   val = Fget (object, Qccl_program_idx);
  2050   return ((! FIXNATP (val)
  2051            || XFIXNUM (val) >= ASIZE (Vccl_program_table))
  2052           ? Qnil : Qt);
  2053 }
  2054 
  2055 DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
  2056        doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
  2057 
  2058 CCL-PROGRAM is a CCL program name (symbol)
  2059 or compiled code generated by `ccl-compile' (for backward compatibility.
  2060 In the latter case, the execution overhead is bigger than in the former).
  2061 No I/O commands should appear in CCL-PROGRAM.
  2062 
  2063 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
  2064 for the Nth register.
  2065 
  2066 As side effect, each element of REGISTERS holds the value of
  2067 the corresponding register after the execution.
  2068 
  2069 See the documentation of `define-ccl-program' for a definition of CCL
  2070 programs.  */)
  2071   (Lisp_Object ccl_prog, Lisp_Object reg)
  2072 {
  2073   struct ccl_program ccl;
  2074   int i;
  2075 
  2076   if (! setup_ccl_program (&ccl, ccl_prog))
  2077     error ("Invalid CCL program");
  2078 
  2079   CHECK_VECTOR (reg);
  2080   if (ASIZE (reg) != 8)
  2081     error ("Length of vector REGISTERS is not 8");
  2082 
  2083   for (i = 0; i < 8; i++)
  2084     {
  2085       intmax_t n;
  2086       ccl.reg[i] = ((INTEGERP (AREF (reg, i))
  2087                      && integer_to_intmax (AREF (reg, i), &n)
  2088                      && INT_MIN <= n && n <= INT_MAX)
  2089                     ? n : 0);
  2090     }
  2091 
  2092   ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
  2093   maybe_quit ();
  2094   if (ccl.status != CCL_STAT_SUCCESS)
  2095     error ("Error in CCL program at %dth code", ccl.ic);
  2096 
  2097   for (i = 0; i < 8; i++)
  2098     ASET (reg, i, make_int (ccl.reg[i]));
  2099   return Qnil;
  2100 }
  2101 
  2102 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
  2103        3, 5, 0,
  2104        doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
  2105 
  2106 CCL-PROGRAM is a symbol registered by `register-ccl-program',
  2107 or a compiled code generated by `ccl-compile' (for backward compatibility,
  2108 in this case, the execution is slower).
  2109 
  2110 Read buffer is set to STRING, and write buffer is allocated automatically.
  2111 
  2112 STATUS is a vector of [R0 R1 ... R7 IC], where
  2113  R0..R7 are initial values of corresponding registers,
  2114  IC is the instruction counter specifying from where to start the program.
  2115 If R0..R7 are nil, they are initialized to 0.
  2116 If IC is nil, it is initialized to head of the CCL program.
  2117 
  2118 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
  2119 when read buffer is exhausted, else, IC is always set to the end of
  2120 CCL-PROGRAM on exit.
  2121 
  2122 It returns the contents of write buffer as a string,
  2123  and as side effect, STATUS is updated.
  2124 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
  2125 is a unibyte string.  By default it is a multibyte string.
  2126 
  2127 See the documentation of `define-ccl-program' for the detail of CCL program.
  2128 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P)  */)
  2129   (Lisp_Object ccl_prog, Lisp_Object status, Lisp_Object str, Lisp_Object contin, Lisp_Object unibyte_p)
  2130 {
  2131   Lisp_Object val;
  2132   struct ccl_program ccl;
  2133   int i;
  2134   ptrdiff_t outbufsize;
  2135   unsigned char *outbuf, *outp;
  2136   ptrdiff_t str_chars, str_bytes;
  2137 #define CCL_EXECUTE_BUF_SIZE 1024
  2138   int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
  2139   ptrdiff_t consumed_chars, consumed_bytes, produced_chars;
  2140   int buf_magnification;
  2141 
  2142   if (! setup_ccl_program (&ccl, ccl_prog))
  2143     error ("Invalid CCL program");
  2144 
  2145   CHECK_VECTOR (status);
  2146   if (ASIZE (status) != 9)
  2147     error ("Length of vector STATUS is not 9");
  2148   CHECK_STRING (str);
  2149 
  2150   str_chars = SCHARS (str);
  2151   str_bytes = SBYTES (str);
  2152 
  2153   for (i = 0; i < 8; i++)
  2154     {
  2155       if (NILP (AREF (status, i)))
  2156         ASET (status, i, make_fixnum (0));
  2157       intmax_t n;
  2158       if (INTEGERP (AREF (status, i))
  2159           && integer_to_intmax (AREF (status, i), &n)
  2160           && INT_MIN <= n && n <= INT_MAX)
  2161         ccl.reg[i] = n;
  2162     }
  2163   intmax_t ic;
  2164   if (INTEGERP (AREF (status, 8)) && integer_to_intmax (AREF (status, 8), &ic))
  2165     {
  2166       if (ccl.ic < ic && ic < ccl.size)
  2167         ccl.ic = ic;
  2168     }
  2169 
  2170   buf_magnification = ccl.buf_magnification ? ccl.buf_magnification : 1;
  2171   outbufsize = str_bytes;
  2172   if (ckd_mul (&outbufsize, outbufsize, buf_magnification)
  2173       || ckd_add (&outbufsize, outbufsize, 256))
  2174     memory_full (SIZE_MAX);
  2175   outp = outbuf = xmalloc (outbufsize);
  2176 
  2177   consumed_chars = consumed_bytes = 0;
  2178   produced_chars = 0;
  2179   while (1)
  2180     {
  2181       const unsigned char *p = SDATA (str) + consumed_bytes;
  2182       const unsigned char *endp = SDATA (str) + str_bytes;
  2183       int j = 0;
  2184       int *src, src_size;
  2185 
  2186       if (endp - p == str_chars - consumed_chars)
  2187         while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
  2188           source[j++] = *p++;
  2189       else
  2190         while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
  2191           source[j++] = string_char_advance (&p);
  2192       consumed_chars += j;
  2193       consumed_bytes = p - SDATA (str);
  2194 
  2195       if (consumed_bytes == str_bytes)
  2196         ccl.last_block = NILP (contin);
  2197       src = source;
  2198       src_size = j;
  2199       while (1)
  2200         {
  2201           int max_expansion = NILP (unibyte_p) ? MAX_MULTIBYTE_LENGTH : 1;
  2202           ptrdiff_t offset, shortfall;
  2203           ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
  2204                       Qnil);
  2205           produced_chars += ccl.produced;
  2206           offset = outp - outbuf;
  2207           shortfall = ccl.produced * max_expansion - (outbufsize - offset);
  2208           if (shortfall > 0)
  2209             {
  2210               outbuf = xpalloc (outbuf, &outbufsize, shortfall, -1, 1);
  2211               outp = outbuf + offset;
  2212             }
  2213           if (NILP (unibyte_p))
  2214             {
  2215               for (j = 0; j < ccl.produced; j++)
  2216                 outp += CHAR_STRING (destination[j], outp);
  2217             }
  2218           else
  2219             {
  2220               for (j = 0; j < ccl.produced; j++)
  2221                 *outp++ = destination[j];
  2222             }
  2223           src += ccl.consumed;
  2224           src_size -= ccl.consumed;
  2225           if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
  2226             break;
  2227         }
  2228 
  2229       if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
  2230           || str_chars == consumed_chars)
  2231         break;
  2232     }
  2233 
  2234   if (ccl.status == CCL_STAT_INVALID_CMD)
  2235     error ("Error in CCL program at %dth code", ccl.ic);
  2236   if (ccl.status == CCL_STAT_QUIT)
  2237     error ("CCL program interrupted at %dth code", ccl.ic);
  2238 
  2239   for (i = 0; i < 8; i++)
  2240     ASET (status, i, make_int (ccl.reg[i]));
  2241   ASET (status, 8, make_int (ccl.ic));
  2242 
  2243   val = make_specified_string ((const char *) outbuf, produced_chars,
  2244                                outp - outbuf, NILP (unibyte_p));
  2245   xfree (outbuf);
  2246 
  2247   return val;
  2248 }
  2249 
  2250 DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
  2251        2, 2, 0,
  2252        doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
  2253 CCL-PROG should be a compiled CCL program (vector), or nil.
  2254 If it is nil, just reserve NAME as a CCL program name.
  2255 Return index number of the registered CCL program.  */)
  2256      (Lisp_Object name, Lisp_Object ccl_prog)
  2257 {
  2258   ptrdiff_t len = ASIZE (Vccl_program_table);
  2259   ptrdiff_t idx;
  2260   Lisp_Object resolved;
  2261 
  2262   CHECK_SYMBOL (name);
  2263   resolved = Qnil;
  2264   if (!NILP (ccl_prog))
  2265     {
  2266       CHECK_VECTOR (ccl_prog);
  2267       resolved = resolve_symbol_ccl_program (ccl_prog);
  2268       if (NILP (resolved))
  2269         error ("Error in CCL program");
  2270       if (VECTORP (resolved))
  2271         {
  2272           ccl_prog = resolved;
  2273           resolved = Qt;
  2274         }
  2275       else
  2276         resolved = Qnil;
  2277     }
  2278 
  2279   for (idx = 0; idx < len; idx++)
  2280     {
  2281       Lisp_Object slot;
  2282 
  2283       slot = AREF (Vccl_program_table, idx);
  2284       if (!VECTORP (slot))
  2285         /* This is the first unused slot.  Register NAME here.  */
  2286         break;
  2287 
  2288       if (EQ (name, AREF (slot, 0)))
  2289         {
  2290           /* Update this slot.  */
  2291           ASET (slot, 1, ccl_prog);
  2292           ASET (slot, 2, resolved);
  2293           ASET (slot, 3, Qt);
  2294           return make_fixnum (idx);
  2295         }
  2296     }
  2297 
  2298   if (idx == len)
  2299     /* Extend the table.  */
  2300     Vccl_program_table = larger_vector (Vccl_program_table, 1, -1);
  2301 
  2302   ASET (Vccl_program_table, idx,
  2303         CALLN (Fvector, name, ccl_prog, resolved, Qt));
  2304 
  2305   Fput (name, Qccl_program_idx, make_fixnum (idx));
  2306   return make_fixnum (idx);
  2307 }
  2308 
  2309 /* Register code conversion map.
  2310    A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
  2311    The first element is the start code point.
  2312    The other elements are mapped numbers.
  2313    Symbol t means to map to an original number before mapping.
  2314    Symbol nil means that the corresponding element is empty.
  2315    Symbol lambda means to terminate mapping here.
  2316 */
  2317 
  2318 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
  2319        Sregister_code_conversion_map,
  2320        2, 2, 0,
  2321        doc: /* Register SYMBOL as code conversion map MAP.
  2322 Return index number of the registered map.  */)
  2323   (Lisp_Object symbol, Lisp_Object map)
  2324 {
  2325   ptrdiff_t len;
  2326   ptrdiff_t i;
  2327   Lisp_Object idx;
  2328 
  2329   CHECK_SYMBOL (symbol);
  2330   CHECK_VECTOR (map);
  2331   if (! VECTORP (Vcode_conversion_map_vector))
  2332     error ("Invalid code-conversion-map-vector");
  2333 
  2334   len = ASIZE (Vcode_conversion_map_vector);
  2335 
  2336   for (i = 0; i < len; i++)
  2337     {
  2338       Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
  2339 
  2340       if (!CONSP (slot))
  2341         break;
  2342 
  2343       if (EQ (symbol, XCAR (slot)))
  2344         {
  2345           idx = make_fixnum (i);
  2346           XSETCDR (slot, map);
  2347           Fput (symbol, Qcode_conversion_map, map);
  2348           Fput (symbol, Qcode_conversion_map_id, idx);
  2349           return idx;
  2350         }
  2351     }
  2352 
  2353   if (i == len)
  2354     Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
  2355                                                  1, -1);
  2356 
  2357   idx = make_fixnum (i);
  2358   Fput (symbol, Qcode_conversion_map, map);
  2359   Fput (symbol, Qcode_conversion_map_id, idx);
  2360   ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
  2361   return idx;
  2362 }
  2363 
  2364 
  2365 void
  2366 syms_of_ccl (void)
  2367 {
  2368   staticpro (&Vccl_program_table);
  2369   Vccl_program_table = make_nil_vector (32);
  2370 
  2371   DEFSYM (Qccl, "ccl");
  2372   DEFSYM (Qcclp, "cclp");
  2373 
  2374   /* Symbols of ccl program have this property, a value of the property
  2375      is an index for Vccl_program_table. */
  2376   DEFSYM (Qccl_program_idx, "ccl-program-idx");
  2377 
  2378   /* These symbols are properties which associate with code conversion
  2379      map and their ID respectively.  */
  2380   DEFSYM (Qcode_conversion_map, "code-conversion-map");
  2381   DEFSYM (Qcode_conversion_map_id, "code-conversion-map-id");
  2382 
  2383   DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector,
  2384                doc: /* Vector of code conversion maps.  */);
  2385   Vcode_conversion_map_vector = make_nil_vector (16);
  2386 
  2387   DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist,
  2388                doc: /* Alist of fontname patterns vs corresponding CCL program.
  2389 Each element looks like (REGEXP . CCL-CODE),
  2390  where CCL-CODE is a compiled CCL program.
  2391 When a font whose name matches REGEXP is used for displaying a character,
  2392  CCL-CODE is executed to calculate the code point in the font
  2393  from the charset number and position code(s) of the character which are set
  2394  in CCL registers R0, R1, and R2 before the execution.
  2395 The code point in the font is set in CCL registers R1 and R2
  2396  when the execution terminated.
  2397  If the font is single-byte font, the register R2 is not used.  */);
  2398   Vfont_ccl_encoder_alist = Qnil;
  2399 
  2400   DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector,
  2401     doc: /* Vector containing all translation hash tables ever defined.
  2402 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
  2403 to `define-translation-hash-table'.  The vector is indexed by the table id
  2404 used by CCL.  */);
  2405     Vtranslation_hash_table_vector = Qnil;
  2406 
  2407   defsubr (&Sccl_program_p);
  2408   defsubr (&Sccl_execute);
  2409   defsubr (&Sccl_execute_on_string);
  2410   defsubr (&Sregister_ccl_program);
  2411   defsubr (&Sregister_code_conversion_map);
  2412 }

/* [<][>][^][v][top][bottom][index][help] */